Point Cloud Alignment through Mid-Air Gestures on a Stereoscopic Display CH123

Katja Krug^{*,1}, Marc Satkowski^{*,1}, Reuben Docea², Tzu-Yu Ku¹, Raimund Dachselt¹

*Equally Contributed; ¹Interactive Media Lab, Technische Universität Dresden; ²National Center for Tumor Diseases

Motivation & Basic Idea

- 2D desktop applications for manual 3D point cloud registration suffer from impaired depth perception and inconvenient interaction
- We propose a user-centered alternative to desktop applications for manual point cloud registration
 - An setup consisting of **a stereoscopic display and an external** hand tracker

Interaction techniques for point cloud alignment in 3D space, including visual feedback during alignment

Fig. 2: A close-up of the same system. A liver model, a point cloud, the tracked hand of the user, and transformation widgets are visible.

Hamburg, Germany | Hybric

April 23-28, 2023

reCHInnecting

A proof-of-concept prototype in **a surgical use case**

- This allows for enhanced depth perception and natural interaction without the need for body worn devices or handheld controllers
- Use case benefits from the sterility and intuitiveness of mid-air gesture interaction in 3D space

System & Interaction Design

Our design space includes three essential aspects for manual 3D point cloud alignment:

3D Model Transformation, Alignment Guidance, and **3D Navigation**

Fig. 1: A user interacting with our proposed system. It consists of a stereoscopic display and a hand tracking device.

Prototype & Implementation

- Created in Unity 3D Engine, runs on a LookingGlass display with a Leap Motion Controller (see Fig. 1)
- Preoperative liver point cloud model by OpenCAS
- Intraoperative environment point cloud created by scanning a human body phantom with a stereo laparoscope using ORB-SLAM2 and a custom point cloud fusion module
- Color-based alignment guidance (see Fig. 3) through a simulated point to-plane evaluation ICP with Unity built-in methods, allowing for 60 fps

Fig. 3: Our color-based alignment guidance feature, which changes the color of the liver model over a gradient between red (left) and green (right).

Future Work & Outlook

Our current design and prototype are a first exploration into alternative interfaces for natural and intuitive manual point cloud alignment.

Possible improvements:

- Alternative and additional guidance features, e.g., colored point cloud, or indications for transformation to lead to better alignment
- - Alternative mode switches, e.g., all interaction with one hand, or using

the non-dominant hand to change modes

Additional use cases

Evaluation possibilities:

- Comparison study with an already existing desktop based system
- Component analysis study to figure out which components (i.e., stereoscopic display, hand gestures) can improve performance and user experience

Contact Information

Katja Krug	Marc Satkowski	Reuben Docea	Raimund Dachselt
katja.krug@tu-dresden.de	msatkowski@acm.org	reuben.docea@nct-dresden.de	dachselt@acm.org