
Research on HCI Toolkits and Toolkits for HCI Research:
A Comparison

Ulrich von Zadow, Raimund Dachselt
Interactive Media Lab Dresden
Technische Universität Dresden

Dresden, Germany
{firstname}.{lastname}@tu-dresden.de

ABSTRACT
In this position paper, we categorize toolkits in HCI research
into two types. The first type, which we will call Research
Toolkits, enable development of interfaces based on entirely
new paradigms. In contrast, Toolkits for Research speed up
development by encapsulating common code revealed dur-
ing research, enabling faster iterations and research partici-
pation by more people. Put another way, Research Toolkits
demonstrate research, while Toolkits for Research aid—and
sometimes enable—research. This paper describes properties
of the two toolkit types and examines criteria for evaluation
in the light of these properties. Our discussion is based on
publications on toolkit evaluation, on sample HCI toolkits,
on industry works that cover toolkit design, and on our own
experiences in writing toolkits.

ACM Classification Keywords
H.5.2. User Interfaces

Author Keywords
User Interface Systems Evaluation; Toolkits; Frameworks

INTRODUCTION
Toolkits are instrumental in enabling us to build user inter-
faces quickly, hiding complexity and codifying best practices.
Toolkit research is therefore an important research subject,
and historically, toolkit ideas that first appeared in research
have seen remarkable use in industry. One example for an
indisputable success in this area is the story of GUI interface
builders, the graphical editors that allow us to place UI ele-
ments in dialogs. The first interface builders were developed
in research projects (e.g., Buxton et al.’s MenuLay [2] and
Xerox PARC’s Trillium system [6]), before they evolved to
the systems that are integrated into virtually every major UI
toolkit today.

Copyright is held by the author/owner(s). Presented at the HCI.Tools 2017 workshop
in conjunction with ACM CHI 2017. May 7, Denver, Colorado, USA.

Like other tools, interface builders work because they save
their users from reinventing the wheel again and again. Tool-
kits make building UIs easier and enable the construction of
larger systems [10, 11]. If designed correctly, they channel cre-
ativity, making known-good paths more accessible and helping
to focus research [4, 10, 11].

An examination of prior work suggests that two types of tool-
kits have evolved in the HCI community, for which we use the
terms Research Toolkits and Toolkits for Research. Research
Toolkits enable development of interfaces based on entirely
new paradigms, such as proxemic interaction [9] or zoomable
user interfaces [14]. The corresponding publications have new
abstractions and concepts as major contributions and use con-
crete toolkits to demonstrate their usefulness. On the other
hand, Toolkits for Research essentially encapsulate common
concepts found during development of (often short-lived) re-
search prototypes, thus enabling faster iterations and research
participation by more people. The goal in this case is a practi-
cal, usable toolkit that makes it easier to conduct research in a
certain area.

This position paper gives evidence for the existence of the two
distinct toolkit types and compares them concerning goals,
properties and criteria for evaluation. To evaluate and discuss
current practices, we examine a sampling of toolkit publica-
tions as well as publications on toolkit evaluation. In addition,
we look at works on toolkit best practices from an indus-
try perspective as well as our own experience in writing and
maintaining a moderately successful Post-WIMP UI toolkit—
libavg1—over a course of 15 years. Together, this provides
grounding for a discussion in which we examine criteria for
the evaluation for both types of toolkits.

EXAMPLE HCI TOOLKIT PUBLICATIONS
To understand the current state of toolkit evaluation, we ex-
amined a sampling of toolkit publications with respect to the
benefits claimed and the methods used to evaluate them. These
were:

• GroupKit [12], a groupware toolkit,
• PyMT [5], a toolkit for touch-based user interfaces,
• the Proximity Toolkit [9], which enables building applica-

tions based on proxemics, and
1www.libavg.de

1

mailto:ulrich.zadow@tu-dresden.de


• the ZOIL Framework [14], a toolkit for zoomable user in-
terfaces.

While these toolkits cover a wide variety of application cases
and research subjects, the publications share remarkable simi-
larities. All of them claim abstractions as major contribution:
GroupKit abstracts away all network and connectivity issues,
PyMT has persistent event objects, the Proximity Toolkit hides
sensing hardware and delivers high-level proxemics data, and
ZOIL’s central abstraction is a zoomable canvas that contains
the complete UI. In all cases, the source code is available
under a permissive license.

Most the toolkits we looked at (GroupKit, Proximity Toolkit,
ZOIL) are validated empirically using comparatively simple
example applications often written by students at the respective
research labs. Thus, they can argue that they are easy to
use, since it is possible for students to use them. Conversely,
they cannot empirically argue that they are useful for larger
systems. The PyMT paper is an exception in that it additionally
describes somewhat larger applications developed outside of
the lab and deployed in public venues.

We can clearly categorize GroupKit and PyMT as Toolkits for
Research, while the Proximity Toolkit and the ZOIL frame-
work fit our definition of Research Toolkits. GroupKit and
PyMT focus on practical usability (the GroupKit paper specif-
ically states that it encapsulates common code revealed during
research). Both also have a longer history of use before the
actual publication and the authors made an effort to maintain
them long after publication: GroupKit was maintained for ten
years, while PyMT is still maintained, albeit under the name
Kivy.

In contrast, the Proximity Toolkit and ZOIL enable develop-
ment of interfaces based on entirely new paradigms, and they
exist to prove that this is possible in general. There is a clear
novelty to the abstractions they provide. The concrete toolkit
is therefore less important than the theoretical contribution.
Perhaps accordingly, both research toolkits in our sample were
maintained for less than two years after publication.

WORK ON TOOLKIT EVALUATION
We can find criteria for toolkit design and evaluation in several
HCI publications, the foremost of these being Olsen’s 2007
paper on toolkit evaluation [11]. This paper is cited in the
CHI reviewing guide and as such is the closest to a standard
for toolkit evaluation that we have. Olsen enumerates a num-
ber of ways toolkits can demonstrate usefulness, which we
paraphrase here:

• Demonstrate importance: The importance of a toolkit
hinges on the number of potential users, on meaningful
target tasks, and on the situations in which it can be used.

• Problem not previously solved: A toolkit can claim novelty,
i.e., demonstrate that it is the first tool for the task.

• Generality: Importance increases if the toolkit can claim to
support multiple user populations and/or target tasks.

• Reduce solution viscosity: Toolkits can claim to support
faster iterations, e.g., by allowing rapid changes in designs.

• Empower new design participants: If a toolkit allows people
to work on a solution that previously couldn’t, e.g., by
making hard problems tractable, this makes it useful.

• Power in combination: Allowing users to combine building
blocks to create a larger solution quickly can make a toolkit
useful.

• Scalability: Toolkits should demonstrate that they can be
used to tackle large problems.

Olsen further argues for the publication of incomplete toolkits.
His view is that missing features are inevitable in research
toolkits for workload reasons, and further, that incompatibility
with legacy code is to be expected and the "price of progress".

If we apply Olsen’s criteria to the different toolkit types we
identified, we find that most criteria apply to both types. One
exception is novelty, which is essential for Research Toolkits
but less easy to achieve when building a Toolkit for Research.
Further, Toolkits for Research cannot have missing features
or be unusable for compatibility reasons in major use cases,
since their goal is practical usefulness.

Myers et al.’s paper on User Interface Software Tools [10],
published in 2000, is at its heart a call for Post-WIMP UI
toolkits, and much of the work is concerned with the transition
from WIMP to the more varied world of today’s UIs. How-
ever, it also contains a number of criteria for evaluating tools.
Among these are the concepts of threshold (how difficult is
it to learn system use) and ceiling (how much can be done
using the tool). In addition, the authors argue that tools "in-
fluence the kinds of user interfaces that can be created" and
can therefore be used to promote the use of known good con-
cepts. Further, they make the point that building tools needs
"significant experience with, and understanding of, the tasks
they support".

In his paper "Toolkits and Interface Creativity" [4], Green-
berg examines the role of toolkits in fostering programmer
creativity. He argues that good tools are "a language that in-
fluences [programmers’] creative thoughts": "Simple ideas
become simple for them to do, innovative concepts become
possible, and designs will evolve as a consequence." The work
is based on several groupware toolkits (including GroupKit)
initially developed in-house to enable rapid iterations during
research. From this experience, he derives a number of design
guidelines for toolkit design:

• Base toolkits on "lessons learned from one-off system de-
sign".

• Make an effort to create good, clean APIs, since APIs "cre-
ate the language that people will use to think about design".

• Embed toolkits within "well-known languages and program-
ming paradigms".

• Disseminate tools: Make them available, well-documented,
make it easy to "quickly get going".

• "Recognize toolkit creation as an academic contribution":
"Currently, toolkit development is rarely rewarded in the
major interface conferences, for toolkits are typically per-
ceived as software that just package already known ideas."

2



Greenberg’s focus is clearly on Toolkits for Research: He
describes toolkits built to directly support in-house research
and subsequently disseminated and published and argues for
compatibility with existing systems. In contrast to Olsen, he
does not particularly emphasize novelty. Further, he consid-
ers compatility to "well-known languages and programming
paradigms" to be important, contradicting Olsen’s view that
incompatibility with legacy code is the "price of progress" and
thus not an issue.

BEST PRACTICES IN INDUSTRY
In addition to the research publications above, we looked
at a number of sources that describe toolkit design from an
industry standpoint. These are a talk by J. Bloch (among
others designer of the Java Collections Framework) on API
design [1], a chapter on reuse in R. Glass’ Book on Software
Engineering [3], and a blog post by J. Atwood2, founder of
stackoverflow.com.

Finally, we base our arguments on our own experience in de-
veloping and maintaining a software framework, libavg3. This
toolkit was originally written starting in 2003 to support devel-
oping software for museum exhibits, and essentially combines
an efficient 2D scene graph with first-class support for touch
input and easy scripting in Python. It is moderately success-
ful in industry (use, e.g., by ART+COM AG4, Archimedes
Exhibitions GmbH5, and Garamantis GmbH6) and has been
used it to build several hundred exhibits. Since 2013, we
have been using it extensively at the Interactive Media Lab
Dresden, among others as technological basis for a number of
publications (e.g., [7, 8, 13]).

A number of Olsen’s criteria (among them easy iterations,
new design participants, combinable building blocks and scal-
ability) clearly apply to real-world toolkits as well. However,
there are a number of additional aspects that make toolkits
successful in practice.

First, industry publications consider the design of reusable
components to be very hard and recommend trials in varying
scenarios. Glass [3] refers to this as "Rules of Three": "(a) It is
three times as difficult to build reusable components as single
use components, and (b) a reusable component should be tried
out in three different applications before it will be sufficiently
general to accept into a reuse library", and Atwood2 affirms:
"We think we’ve built software that is a general purpose solu-
tion to some set of problems, but we are almost always wrong.
We have the delusion of reuse". This is in contrast to toolkit
publications that claim toolkit use only in the author’s lab.

Second, toolkits often need to maintained for extended periods
of time, and therefore, maintainability is important. In our
experience with libavg, a significant amount of time is spent
adapting the toolkit to the changing world around it: As ex-
amples, since libavg’s inception in 2003, touch has become
an important input method, GPUs have become immensely
2https://blog.codinghorror.com/rule-of-three/
3https://www.libavg.de/
4http://artcom.de/
5https://www.archimedes-exhibitions.de/
6https://www.garamantis.com/

more powerful, and various technologies in use have become
unmaintained or been superseded by more powerful, mod-
ern ones. Time spent maintaining software is overhead. It is
therefore important that this requires minimal effort, and that
makes appropriate internal abstractions and readable, well-
documented code critical.

Third, API usability is important. Bloch [1] emphasizes the
importance of designing an easy-to-use and powerful API
for the first public release: "Public APIs, like diamonds, are
forever. You have one chance to get it right so give it your
best". He therefore promotes a user-centered approach to API
design, structures "requirements as use-cases" and suggests
the equivalent of paper-prototyping for APIs: "Code the use-
cases against your API before you implement it" as well as
expert reviews: "Show your design to as many people as you
can".

DISCUSSION
Both the HCI toolkits we examined and the works on toolkit
evaluation give evidence towards the existence of two clearly
different toolkit types that need different criteria for evaluation.
Olsen’s criteria favor new abstractions and concepts as major
contributions and therefore fit very well to Research Toolkits.
A number of Olsen’s criteria are also important in both cases:
For instance, a large potential user population, the ability to
combine building blocks to create larger solutions and the
scalability to large problems are important in both cases.

However, several criteria do not fit in the case of Toolkits
for Research: Since they are meant to be practically usable,
compatibility with legacy code becomes important and missing
features hinder acceptance. Further, since they are designed
in response to concrete needs in prototype development, it
may be harder for them to demonstrate novelty. Greenberg
hints at this when he writes: "Currently, toolkit development is
rarely rewarded in the major interface conferences, for toolkits
are typically perceived as software that just package already
known ideas"[4]. Still, Greenberg’s publication as well as our
own experiences in building and maintaining in-house toolkits
suggest that they can play an important role in speeding up
research and channeling creativity.

Should we be interested in this type of toolkit for our commu-
nity, it may be beneficial to look at best practices in industry
for additional criteria. In this case, examining toolkit main-
tainability and API usability (based on sound API design prin-
ciples) may give us candidates. The PyMT paper also gives
evidence that Toolkits for Research may in some cases be
able to demonstrate scalability to larger problems empirically:
Toolkit publications later in the toolkit’s lifecycle might make
it feasible to write larger applications and even demonstrate
practical use by a non-captive audience, i.e., outside of the
original research lab.

CONCLUSION
Based on a sample of toolkit publications as well as publica-
tions on toolkit evaluation, we have categorized toolkits in
HCI research into two distinct types, which we have named
Research Toolkits and Toolkits for Research. Further, we have

3



compared these types concerning development goals and prop-
erties and looked at works on toolkit best practices from an
industry perspective. Based on this research as well as our
own experiences in toolkit development, we have additionally
discussed criteria for the evaluation of both types of toolkits.

ACKNOWLEDGMENTS
We wish to thank Ulrike Kister and rest of the IMLD for
fruitful discussions on the subject of HCI toolkits.

REFERENCES
1. Joshua Bloch. 2006. How to Design a Good API and

Why It Matters. In Companion to the 21st ACM
SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications (OOPSLA ’06).
ACM, New York, NY, USA, 506–507. DOI:
http://dx.doi.org/10.1145/1176617.1176622

2. W. Buxton, M. R. Lamb, D. Sherman, and K. C. Smith.
1983. Towards a Comprehensive User Interface
Management System. SIGGRAPH Comput. Graph. 17, 3
(July 1983), 35–42. DOI:
http://dx.doi.org/10.1145/964967.801130

3. Robert L. Glass. 2002. Software Engineering: Facts and
Fallacies. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

4. Saul Greenberg. 2007. Toolkits and interface creativity.
Multimedia Tools and Applications 32, 2 (2007), 139–159.
DOI:http://dx.doi.org/10.1007/s11042-006-0062-y

5. Thomas E. Hansen, Juan Pablo Hourcade, Mathieu
Virbel, Sharath Patali, and Tiago Serra. 2009. PyMT: A
post-WIMP Multi-touch User Interface Toolkit. In
Proceedings of the ACM International Conference on
Interactive Tabletops and Surfaces (ITS ’09). ACM, New
York, NY, USA, 17–24. DOI:
http://dx.doi.org/10.1145/1731903.1731907

6. D. A. Henderson, Jr. 1986. The Trillium User Interface
Design Environment. SIGCHI Bull. 17, 4 (April 1986),
221–227. DOI:http://dx.doi.org/10.1145/22339.22375

7. Ulrike Kister, Patrick Reipschläger, Fabrice Matulic, and
Raimund Dachselt. 2015. BodyLenses: Embodied Magic
Lenses and Personal Territories for Wall Displays. In
Proceedings of the 2015 International Conference on

Interactive Tabletops & Surfaces (ITS ’15). ACM, New
York, NY, USA, 117–126. DOI:
http://dx.doi.org/10.1145/2817721.2817726

8. Ricardo Langner, Ulrich von Zadow, Tom Horak, Annett
Mitschick, and Raimund Dachselt. 2016. Content Sharing
Between Spatially-Aware Mobile Phones and Large
Vertical Displays Supporting Collaborative Work. In
Collaboration Meets Interactive Spaces, Craig Anslow,
Pedro Campos, and Joaquim Jorge (Eds.). Springer
International Publishing, 75–96. DOI:
http://dx.doi.org/10.1007/978-3-319-45853-3_5

9. Nicolai Marquardt, Robert Diaz-Marino, Sebastian
Boring, and Saul Greenberg. 2011. The proximity toolkit:
prototyping proxemic interactions in ubiquitous
computing ecologies. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology (UIST ’11). ACM, New York, NY, USA,
315–326. DOI:
http://dx.doi.org/10.1145/2047196.2047238

10. Brad Myers, Scott E. Hudson, and Randy Pausch. 2000.
Past, Present, and Future of User Interface Software Tools.
ACM Trans. Comput.-Hum. Interact. 7, 1 (March 2000),
3–28. DOI:http://dx.doi.org/10.1145/344949.344959

11. Dan R. Olsen, Jr. Evaluating User Interface Systems
Research. In Proc. UIST ’07. ACM, 251–258. DOI:
http://dx.doi.org/10.1145/1294211.1294256

12. Mark Roseman and Saul Greenberg. 1996. Building
Real-time Groupware with GroupKit, a Groupware
Toolkit. ACM Trans. Comput.-Hum. Interact. 3, 1 (March
1996), 66–106. DOI:
http://dx.doi.org/10.1145/226159.226162

13. Ulrich von Zadow and Raimund Dachselt. 2017. GIAnT:
Visualizing Group Interaction at Large Wall Displays. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA. DOI:
http://dx.doi.org/10.1145/3025453.3026006

14. Michael Zöllner, Hans-Christian Jetter, and Harald
Reiterer. 2011. ZOIL: A Design Paradigm and Software
Framework for Post-WIMP Distributed User Interfaces.
Springer London, London, 87–94.

4

http://dx.doi.org/10.1145/1176617.1176622
http://dx.doi.org/10.1145/964967.801130
http://dx.doi.org/10.1007/s11042-006-0062-y
http://dx.doi.org/10.1145/1731903.1731907
http://dx.doi.org/10.1145/22339.22375
http://dx.doi.org/10.1145/2817721.2817726
http://dx.doi.org/10.1007/978-3-319-45853-3_5
http://dx.doi.org/10.1145/2047196.2047238
http://dx.doi.org/10.1145/344949.344959
http://dx.doi.org/10.1145/1294211.1294256
http://dx.doi.org/10.1145/226159.226162
http://dx.doi.org/10.1145/3025453.3026006

	Introduction
	Example HCI Toolkit Publications
	Work on Toolkit Evaluation
	Best Practices in Industry
	Discussion
	Conclusion
	Acknowledgments
	References 

