
AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 1

Interactive Near-Field Illumination
for Photorealistic Augmented Reality

with Varying Materials on Mobile Devices

Kai Rohmer, Wolfgang Büschel, Raimund Dachselt, and Thorsten Grosch

Abstract—At present, photorealistic augmentation is not yet possible since the computational power of mobile devices is insufficient.

Even streaming solutions from stationary PCs cause a latency that affects user interactions considerably. Therefore, we introduce a

differential rendering method that allows for a consistent illumination of the inserted virtual objects on mobile devices, avoiding delays.

The computation effort is shared between a stationary PC and the mobile devices to make use of the capacities available on both sides.

The method is designed such that only a minimum amount of data has to be transferred asynchronously between the participants. This

allows for an interactive illumination of virtual objects with a consistent appearance under both temporally and spatially varying real

illumination conditions. To describe the complex near-field illumination in an indoor scenario, HDR video cameras are used to capture

the illumination from multiple directions. In this way, sources of illumination can be considered that are not directly visible to the mobile

device because of occlusions and the limited field of view. While our method focuses on Lambertian materials, we also provide some

initial approaches to approximate non-diffuse virtual objects and thereby allow for a wider field of application at nearly the same cost.

Index Terms—Computer Graphics, Three-Dimensional Graphics and Realism, Augmented and Virtual Realities.

✦

1 INTRODUCTION

M OBILE devices like smartphones and tablet PCs are part

of our everyday life. In combination with the integrated

camera, the mobile device can act like a window into an aug-

mented real world [1]. When virtual objects are inserted, their

appearance is often inconsistent with the real environment, mainly

because of incorrect illumination. So far, a consistent illumination

that handles both dynamic scenes and dynamic lighting conditions

eluded the mobile platforms. Even though many sophisticated

illumination methods allow for plausible global illumination at

interactive rates on non-mobile platforms, several applications

would benefit from such a mobile system. For instance, appli-

cations in interior planning and architecture can be enhanced

by convincing in-place visualization of the designer’s vision.

Bringing back virtual versions of lost or destroyed artifacts would

open up new possibilities in the field of cultural heritage. Mobile

AR can also be used in movie productions or in the process of

creating a theater play by providing previews of the final scene

and the created mood to the director at early stages. Furthermore,

it is relevant for mobile AR games, as users expect more and more

enhanced graphics.

We primarily aim for applications like the augmentation of

real prototypes, for which a correct illumination at any place in

the scene is required and a perceptively plausible illumination is

not sufficient.

To accomplish this, one needs to overcome three problems:

• Kai Rohmer is part of the Computational Visualistics Group at the

University of Magdeburg, Germany. E-mail: kai.rohmer@isg.cs.ovgu.de

• Thorsten Grosch is head of the Computational Visualistics Group at the

University of Magdeburg, Germany. E-mail: grosch@isg.cs.ovgu.de

• Wolfgang Büschel is part of the Interactive Media Lab at the Technische

Universität Dresden, Germany. E-mail: bueschel@acm.org

• and Raimund Dachselt is head of the Interactive Media Lab at the

Technische Universität Dresden, Germany. E-mail: dachselt@acm.org

• Mobile devices, such as tablets, do not yet have the com-

putational resources necessary for computing interactive

global illumination on their own.

• Streaming rendered images from a powerful desktop PC

causes a latency that is too high to meet the requirements

for seamlessly integrated virtual objects, especially during

user interactions and for multiple simultaneous views.

• Real lighting conditions in the dynamic scene need to be

captured reliably and limitations caused by occlusions and

the limited field of view have to be overcome.

In this paper, we present a novel, distributed illumination approach

for AR with consistent illumination of virtual objects with direct

Fig. 1. The tablet camera shows the real world, augmented by virtual
objects with consistent illumination, displayed at 27 fps. By using a
tracked device, the user can move the tablet freely in the augmented
real world and interact with the inserted objects.

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 2

(a)

HDR video cameras
with �sh-eye lenses

mobile
devices

 PC
(stationary)

WiFi

optical tracking

(b)

Fig. 2. (a): The camera image of a mobile device does not see the
important light sources required for a consistent illumination of a virtual
object. (b): Our hardware setup.

light, indirect light (color bleeding) and shadows of primary and

strong secondary lights. Due to the limitations in computational

power of the mobile device and the lack of important information

(see Figure 2a), we split the illumination into two parts: In the

first part, the existing radiance values are captured by a number

of HDR video cameras that are placed at different locations in

the scene, such that each part of the scene is visible to least one

camera. This acquisition process and the extraction of parameters

for our lighting model is executed on a stationary PC. Based

on the extracted information, we display augmentations with

consistent illumination at an interactive frame rate on the mobile

device, as shown in Figure 1. To avoid a potential bottleneck of

the bandwidth between PC and mobile devices, our illumination

model reduces the amount of transferred data that is required for

the reconstruction of the environmental lighting condition and the

illumination of virtual objects.

Assuming a single mobile device is used to process all tasks

from acquisition to rendering, the limitations in computing power

and the quality of sensor data might become less important factors

in the future. However, due to occlusions, it is generally not

possible to gather the dynamic illumination on all surfaces of the

environment from the mobile device position only.

In summary, our main contributions are:

• A new distributed approach for interactive Augmented

Reality under dynamic real-world environment lighting,

• A lighting model for correct near-field illumination with

compact parametrization to be transferred to one or multi-

ple display devices.

2 PREVIOUS WORK

AR with Consistent Illumination The first work for AR with

consistent illumination was presented by Fournier et al. [2] who

invented the differential rendering technique. Further extensions

exist for hierarchical radiosity [3] and final gathering [4]. De-

bevec [5] introduced the high dynamic range (HDR) light probe

to capture the distant real illumination. A similar approach was

presented by Sato et al. [6] using a fish-eye lens. Grosch [7] intro-

duced differential photon mapping to correctly display reflecting

and refracting objects and their changes in illumination. To capture

the existing near-field illumination, Corsini et al. [8] used a pair

of light probes to estimate the distance of light sources. Using a

movable HDR camera with a light probe, Unger et al. [9] captured

the complete near-field illumination inside a small region. Even

if no information of the surrounding illumination is available, a

plausible augmentation can be implemented, as shown by Karsch

et al. [10] for legacy photographs. A list of AR illumination

techniques can be found in Jacobs and Loscos [11].

Interactive AR with Consistent Illumination For an inter-

active setting, the first works for AR with consistent illumination

were presented by Kanbara and Yokoya [12], and Agusanto et

al. [13]. They assume a distant and constant illumination, captured

by a light probe. Several approaches simply define the existing

illumination manually, e.g., Haller et al. [14] and Pessoa et al. [15].

Gibson and Murta [16] demonstrated how to implement differ-

ential rendering on the GPU for distant illumination. This was

further extended in [17] for the augmentation of pictures of real

rooms, taking near-field illumination into account by combining

point lights and an irradiance volume. Grosch [18] showed how

this technique can be further improved for the augmentation in

a panoramic image viewer. For temporally varying illumination,

Havran et al. [19] introduced a sampling approach for an HDR

video camera. In Korn et al. [20], two such HDR video cameras

were used to estimate the distance of moving light sources.

In Grosch et al. [21], a near-field illumination approach was

presented for augmentations under daylight in a real room. Similar

to our method, an HDR video camera was used to capture the

incoming distant radiance, but only from outside the room. We use

multiple HDR video cameras inside the room to capture the com-

plex near-field illumination. The idea of differential rendering has

been applied to several interactive global illumination methods,

including instant radiosity [22], [23], progressive path tracing [24]

and light propagation volumes [25]. Kan and Kaufmann [26]

presented a partial implementation of differential photon mapping,

running at near-interactive frame rates on the GPU. Assuming

a single dominant light direction, Nowrouzezahrai et al. [27]

introduced a real-time light factorization method that allows

soft and hard virtual shadows. Instead of special equipment, an

approximate reconstruction of the environmental light is possible

from simple objects. This can be a diffuse sphere [28], a special

shading probe [29] or only the user’s hand [30]. Madsen and

Lal [31] demonstrated a photometric reconstruction from shadows,

Jachnik et al. [32] used a specular surface. While all these inverse

rendering methods only approximate the incoming illumination,

we aim for correctly capturing the surface radiance of the whole

environment. A first approach to augment live images based on

geometry captured by a RGB-D camera was presented by Lensing

and Broll [33]. The captured depth image was used here for a fast

illumination based only on screen-space information. Meilland

et al. [34] reconstructed both 3D geometry and HDR radiance

values based on a moving RGB-D camera. For static illumination,

a real-time rendering can be performed with correct near-field

reflections and shadows of extracted light sources. Gruber et

al. [35] demonstrated a probeless approach that displays a visually

plausible augmentation. Here, a low-frequency environment map

is reconstructed from the illumination of diffuse objects which al-

lows soft shadows between virtual and real objects [36]. Recently,

Csongei et al. [37] presented a progressive path tracing solution

for AR on a mobile phone based on a pre-recorded environment

map. Here, the illumination is simulated on a stationary PC and

streamed to the mobile device.

We observe that so far there is no solution for augmented real-

ity with consistent, spatially and temporally varying illumination

on a mobile device. The first reason is the low computational

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 3

power of current mobile devices. Secondly, none of the existing

methods addresses an on-line capture process of the spatially and

temporally varying near-field illumination. This paper presents a

solution to these problems.

3 OVERVIEW

Our goal is the consistent illumination of virtual objects on mobile

devices in a real environment. Multiple users should be able to

interact in the real world with photorealistic augmentations. We

thereby focus on an indoor scenario with a difficult, spatially

and temporally varying near-field illumination (Figure 2a). This

requires the knowledge of the plenoptic function [38], which

includes the real radiance values at any point in the scene, viewed

from any direction at any time. Based on this information, an

interactive global illumination simulation can be computed.

3.1 Hardware Setup and Precomputations

Our hardware setup is shown in Figure 2b: Multiple HDR video

cameras are connected to a stationary PC. The cameras are

equipped with fish-eye lenses and placed in the scene, such that all

regions are visible to least one camera. To enable the measurement

of radiance values on real environment surfaces, each camera has

to be calibrated in a preprocess. Intrinsic parameters are estimated

by using the OCamCalib Toolbox1 by Davide Scaramuzza and

stored in a lookup table to map the captured image on a perfect

equidistant projection. To reconstruct the extrinsic parameters,

we simply capture a tracked checker board and reconstruct the

position of the camera. To acquire absolute real radiance values

instead of arbitrary pixel colors, a photometric calibration is nec-

essary. Therefore, we reconstruct the camera response curve using

pfstools2, leading to linear relative radiance values after applying

the inverted response curve. By capturing images of an XRite

ColorChecker3 and a least-squares approximation, we obtain a

matrix that maps the measured linear radiances onto absolute

radiances known for each tile of the checker. A similar process is

repeated for each mobile device. Additionally, we estimate another

matrix to compensate the color shift introduced by the display. The

current position and orientation of the mobile device are captured

at runtime. For communication between the stationary PC, mobile

devices and the tracking system we use WiFi.

In a preprocess, the geometry and the diffuse materials of

the real environment are reconstructed manually using a common

DCC tool. The resulting model is a very coarse representation with

a simple uv-mapping that is later used as texture atlas (Sec. 3.3).

3.2 Distributed Illumination

Given the HDR information – real radiance at each position of

the environment – in combination with the 3D model, we aim

for a consistent illumination of virtual objects. Based on measured

radiance values of the real environment, there are different choices

for interactive global illumination. The obvious solution is to

use one of the methods presented in [39] to render the images

on a stationary machine and stream the results to all mobile

devices. We do not follow this idea for several reasons: First,

we need a different image for each mobile device which can

lead to a performance break-down on the server side in case of

1. https://sites.google.com/site/scarabotix/ocamcalib-toolbox

2. http://resources.mpi-inf.mpg.de/hdr/calibration/pfs.html

3. http://xritephoto.com/ph product overview.aspx?id=1192

many mobile devices. Additionally, the main difficulty in direct

user interaction is the in-time update of the displayed augmented

scene. This is because there is a latency in sending notifications

of user input to the stationary PC, as well as waiting for the

generation, compression, and transmission of the rendered image

that is eventually combined with the camera image. We therefore

developed an illumination model that distributes the computation

between the static PC and the mobile devices.

One option for interactive global illumination is the extraction

of a set of virtual point lights (VPLs) [40]. This allows for a com-

plete illumination from all directions with a shadow cast by each

VPL. For good quality, at least a few hundred VPLs are required.

Unfortunately, only a few VPLs can be computed on a mobile

device at interactive frame rates. On the other hand, precomputed

radiance transfer (PRT) [41] techniques can be used, which allow

real-time illumination with natural light. These techniques work

well for low-frequency illumination and diffuse materials. This is

especially useful for indirect illumination, such as color bleeding

from real to virtual objects. However, high-frequency illumination

and hard shadows are difficult to achieve. To solve this problem,

we developed a hybrid solution that combines the best of both

approaches. Our solution is based on the observation that most

typical settings consist of a few bright light sources and large low-

frequency indirect light regions. We follow the idea introduced

in [17] and split the incoming light into a high-frequency and a

low-frequency part. There are two reasons for this: First, it allows

for an efficient illumination with the desired effects: The high-

frequency illumination and shadows can be displayed with a small

set of VPLs, while the low-frequency illumination such as color

bleeding can be implemented with PRT. The second reason is that

this combination requires only a small amount of data that needs to

be transferred between the stationary PC and the mobile devices,

enabling interactive update rates. In contrast to that, Gibson et

al. [17] create a subdivision of the environment geometry and

treat the resulting patches as source and/or receiver. Based on

occlusions between source and receiver patches because of virtual

objects, the influence on the background is computed in the sense

of differential rendering. Since we do not work with patches and

links between them, we only make use of the fundamental idea

to classify the regions with the highest intensity as primary light

source.

3.3 Pipeline Overview

The whole pipeline, from capturing images of the real world to

displaying the augmented image using the distributed illumination,

is summarized in Figure 3: The HDR video cameras with fish-

eye lenses capture the existing radiance values. Then, on the

stationary PC each image is projected onto the reconstructed 3D

geometry using a hemispherical projection and shadow mapping.

The recorded radiance values are stored in a radiance atlas

which describes a 1:1 mapping of 3D scene points to atlas texels

(Sec. 4.1). To capture the illumination at all relevant parts

of the environment, we use multiple cameras. Therefore, areas

seen by more than one camera receive multiple measurements

leading to a more robust result. For an illumination at both

interactive speed and high quality on a mobile device, we proceed

as follows: The radiance atlas is split into two parts: A direct

(high-frequency) radiance atlas and an indirect (low-frequency)

radiance atlas (Sec. 4.2). The direct radiance atlas is transformed

into a small set of area lights (Sec. 4.3), which is transferred to

https://sites.google.com/site/scarabotix/ocamcalib-toolbox
http://resources.mpi-inf.mpg.de/hdr/calibration/pfs.html
http://xritephoto.com/ph_product_overview.aspx?id=1192

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 4

Stationary PC Tablet PCs

WiFi

HDR

Camera 1

WiFi

SH
Coefficients

Augmented

Image
Split

Radiance

Atlas

Indirect Radiance

Atlas
SH Projection

Low Frequency

Illumination

Camera

Image

Differential

Rendering

Scene

Geometry

…

Projection Tracking
Position &

CubeMap

Scene Geometry

& Virtual Object

HDR

Camera N Area Lights

Direct Radiance

Atlas
Clustering

High Frequency

Illumination

Orientation

Sampling

Fig. 3. The whole pipeline for distributed illumination from capturing multiple images of the real environment to the augmentation of the live camera
stream on mobile devices.

the mobile device. PRT is used for low-frequency illumination

on the clients. Thus, the indirect radiance is transformed into

the spherical harmonic (SH) basis (Sec. 4.4) and the resulting

coefficients are transferred to the tablet PC as well. Based on this

information, the illumination of virtual objects can be computed

quickly on the tablet PC without streaming any images. Using

differential rendering, the virtual object can then be inserted into

the tablet camera image with correct appearance and shadows

(Sec. 5).

4 SERVER COMPUTATIONS

We explain the server computations of our method based on a

simple synthetic example shown in Figure 4a.

4.1 Acquiring the Radiance Atlas

We use a texture atlas to record radiance values for all points in

the scene. To update the current lighting conditions, each HDR

camera permanently projects its radiance values into the atlas.

This is implemented by rendering the reconstructed scene with

a vertex shader that replaces the vertex position with its texture

coordinate and outputs the world position along with the vertex

normal to the pixel shader stage. There, we project the world

position of each fragment into the camera image space to get

the corresponding image coordinate. Subsequently, we sample the

camera image and a previously generated artificial depth image

at this location to decide the visibility of the currently processed

texel in a way similar to shadow mapping (see Figure 5). Since

triangles that are not facing the camera cannot be seen, they are

rejected during the rendering into the atlas, depending on the dot

product of normal and view direction. When multiple cameras see

the same region, we compute a weighted average of the camera

images (see Figure 4b).

To account for the low resolution in the border regions of

a fish-eye projection, we use the angle αi to the main camera

direction di as a weighting. We also use the angle βi between

the view direction and the surface normal n to compensate

inaccuracies during the reconstruction by considering steep angles

less reliable. As final weight for a texel of camera i we are using

wi = cosαi cosβi. Here and in the following the cosine is clamped

to the interval [0,1] to avoid special treatment of negative values.

Since each texel in the atlas can become an indirect light

source, we store both position and normal to correctly place and

rotate the light. For photometric correctness, each texel stores both

the radiance value and the spatially varying world-space area of

the texel. To compensate artifacts at texture seams, we apply a

dilation over the 8 neighbors with a range of 2 texels.

(a) (b)

Fig. 4. Acquiring the radiance of a simple synthetic scene with three
HDR cameras (a) and the angular weighting used for merging the
projected camera images (b).

(a) Camera (b) Virtual Depth (c) Projection
Images Renderings into the Atlas

Fig. 5. Acquiring the radiance atlas for the synthetic scene with three
HDR cameras. Each HDR camera records a fish-eye image of the
scene. Additionally, a depth buffer is rendered for each camera using
the reconstructed scene. Using the depth buffer for visibility tests, the
camera image is then projected into the radiance atlas (right). Note that
each camera has only a partial information of the total scene radiance.

4.2 Splitting the Radiance Atlas

To determine the radiance L at any point x, seen from direction

ω , we integrate over the hemisphere Ω to solve the rendering

equation [42]

L(x,ω) =
∫

Ω
fr(x,ωi,ω) Lin(x,ωi) cosθi dωi , (1)

where Lin is the incoming radiance from direction ωi, fr is the

bidirectional reflectance distribution function (BRDF), and θi is

the angle between ωi and the surface normal at x. For efficiency

reasons, we separate the reflected radiance in direct radiance LDir

and indirect radiance LInd

L(x,ω) = LDir(x,ω)+LInd(x,ω) , (2)

where LDir corresponds to the direct radiance caused by light

sources and strong indirect lights and LInd is the remaining indirect

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 5

(a) Radiance Atlas (b) Direct Radiance (c) Indirect Radiance

Fig. 6. The radiance atlas (a) is split in direct radiance - here stored as
intensity (b) and indirect radiance (c). Note that the direct radiance atlas
contains both the light sources and bright indirect regions. The sepa-
ration is computed per color channel to allow sources in monochrome
regions that would have a low gray scale brightness.

radiance. This means that we decide for each direction of the

hemisphere around x whether it corresponds to incoming direct

radiance ΩDir or incoming indirect radiance ΩInd :

LDir(x,ω) =
∫

ΩDir

fr(x,ωi,ω) Lin(x,ωi) cosθi dωi

LInd(x,ω) =
∫

ΩInd

fr(x,ωi,ω) Lin(x,ωi) cosθi dωi .
(3)

To implement this separation, we split the radiance atlas in a

direct radiance atlas and an indirect radiance atlas. For this, we

determine a threshold value: Texels in the atlas with a radiance

larger than the threshold are assigned to the direct radiance atlas,

the other texels are assigned to the indirect radiance atlas. To

allow for varying lighting conditions, this threshold is adjusted

dynamically. For this purpose, we provide a user-defined param-

eter τ that describes how much of the total amount of light in

the scene should be assigned to the direct light. To determine the

threshold radiance based on τ , we first compute the histogram

of all radiant intensity values in the atlas. We then accumulate the

radiant intensity values from high to low until the given percentage

is reached. In this way, the direct radiance atlas always contains

a certain amount of direct light or strong indirect light. Figure 6

shows an example for this separation. The selection of a suitable

value for τ is discussed in Sec. 6.7.

4.3 Finding Direct Light Sources

After splitting the atlas, the direct radiance at x is computed by

summing up all NDir texels in the direct radiance atlas:

LDir(x,ω)≈
NDir

∑
i=1

fr(x,ωi,ω) Li V (x,ωi) cosθi

∆Ai cosθ

r2
, (4)

where Li and ∆Ai are the radiance and area of texel i, and V

is the binary visibility function. The distance between sender

and receiver is r and the angle to the sender normal is θ . To

simplify the computation, we now group the NDir texels from the

direct radiance atlas into a low number of j = 1..M clusters. In

accordance with [43] we denote the clusters as virtual area lights

(VALs). The unoccluded direct radiance at x due to a VAL j is

then given by:

LVAL j
(x,ω) = fr(x,ω j,ω)

I j cosθ j cosθ

r2
, (5)

where the radiant intensity I j of VAL j is computed by summing

up all N j texels assigned to this cluster:

I j =
N j

∑
k=1

Lk ∆Ak . (6)

Therefore, the direct radiance can be approximated by summing

up all M VALs:

LDir(x,ω)≈
M

∑
j=1

LVAL j
(x,ω)V (x,ω j) . (7)

Note that for M = NDir, this yields Eq. (4) without V (x,ωi).
To avoid flickering, these extracted virtual area lights have to

be coherent under temporally varying illumination. To accomplish

this, we modified the clustering method described by Dong et

al. [43]. Instead of generating VPLs by sampling a reflective

shadow map using a Halton sequence, we draw a set of samples

in the direct radiance atlas by importance sampling on the GPU.

By dividing the radiance of each pixel by the overall radiance

of the direct radiance atlas we can define a probability density

function. Prefix sum scans are then used to generate cumulative

density functions (CDF) which are sampled using the inverse CDF

method for 2D. Similar to Dong et al., we use k-means clustering

with positions and normals as weight to generate clusters of the

samples. In Sec. 5 we estimate the visibility function for each

VAL by a single shadow map which also follows Dong et al. [43].

To correctly compute the radiant intensity I j of each VAL using

Eq. (6), each texel in the direct radiance atlas is assigned to its

closest cluster center, using the same distance metric. Finally,

the data to be transferred to the mobile device for each VAL is

the following: Position (12 bytes), normal (4 bytes, compressed),

radiant intensity (12 bytes) and area (4 bytes). In total, these are

only 32 bytes per VAL. The total number of VALs is a time-quality

tradeoff, in our experiments we use 8 ≤ M ≤ 64.

Note that we only use the direct radiance atlas for the VAL

extraction and ignore the current position of the virtual objects.

As an alternative, an environment map could be rendered from the

virtual object center position. The drawback of this option is that

we might miss some important light sources which are not visible

from the center of the virtual object. Additionally, the global VAL

selection achieves a better temporal coherence, and in the case

of multiple virtual objects, only one set of VALs is used which

follows the concept of a consistent global light model.

4.4 Compressing Indirect Light

For the indirect light LInd , we assume that the remaining illumina-

tion in the indirect radiance atlas is of low frequency. In this case, a

compression using spherical harmonics (SH) can be applied to the

environment light around the virtual object. For a diffuse virtual

object with reflection coefficient ρ , it is sufficient to use only the

first K = 9 basis functions for an illumination with a barely visible

error, as shown in [41], [44]. Given a vertex v at position x, the

indirect radiance is computed as a simple dot product:

LInd(x,ω)≈
ρ

π

K−1

∑
k=0

CkCvk , (8)

where the coefficients Ck and Cvk are obtained by a projection onto

the SH basis function Yk:

Ck =
∫

ΩInd

Lin(x,ωi) Yk(ωi) dωi (9)

Cvk =
∫

Ω
V (x,ωi) cosθi Yk(ωi) dωi . (10)

The Ck coefficients can be interpreted as the amount of light that

is incident from all directions of the surrounding. Corresponding

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 6

(a) Sampling (b) k-means Clustering

(c) Virtual Area Lights (VALs) (d) Direct Illumination

Fig. 7. VAL extraction for direct light: Importance Sampling on the
direct radiance atlas (a). Using k-means clustering, these samples are
grouped in M clusters (b). Each texel is assigned to the closest cluster
center. Integration over each cluster leads to M VALs (c) that are used
for direct illumination of a virtual object (d).

to that, the Cvk coefficients at a vertex v describe a set of directions

from which incident light is not occluded. As the SH basis

functions are orthonormal, the dot product of both is then the

amount of incident unoccluded light from all directions at the

vertex. The coefficients Cvk of the transfer function V cosθi are

static, so they can be precomputed and stored per vertex at the

virtual object. In contrast, the coefficients Ck of the environment

map Lin change whenever the incoming illumination changes. We

therefore render a low-resolution (6×32×32) cube map from the

virtual object’s position with the indirect radiance atlas as texture

of the surrounding scene. Then, this is projected to the first nine

spherical harmonic basis functions Yk and the resulting coefficients

Ck are transferred to the mobile device. Using RGB float values,

these are only 9× 3× 4 = 108 bytes in total. In case of multiple

mobile devices, the same coefficients can be reused. In case of

multiple virtual objects, this process is repeated for each object.

The computation cost for this step is small (see Sec. 6).

In fact, we are able to also consider the indirect light transmis-

sion between virtual objects with a small overhead by including

the other virtual objects during the indirect light estimation of the

one that is updated. This is shown in Figure 8 (bottom) for the

BUNNY interacting with a blue DRAGON. To keep the additional

effort low, the objects are illuminated by PRT, too. Therefore,

we render another cube map containing direct and indirect light

to derive SH-coefficients with the correct amount of light. In

summary, we are rendering 2n cube maps, each containing n− 1

virtual objects and the reconstructed scene in order to achieve

additional indirect light transmission between n virtual objects.

Note that these interreflections cover b− 1 bounces for objects

that are static for b iterations.

To meet the real-time requirements we need to be able to

perform this compression for multiple cube maps in a narrow time

frame. Therefore, we precompute SH-coefficient weights Cwtk for

each cube map texel ωt and use the GPU to weight and accumulate

the radiance L(ωt) per texel:

O
n
e
 S

in
g
le

V
ri
tu

a
l
O

b
je

c
t

M
u
lt
ip

le

V
ir
tu

a
l
O

b
je

c
ts

Indirect Light Cube Map Visualized SH Compression Indirect Illumination

Fig. 8. To estimate the indirect illumination of a virtual object, we first
render a cube map with the indirect radiances from the object center
(left). This is projected into the first nine SH basis functions (center)
which allows a real-time illumination of a virtual object (right). The
second row shows multiple virtual objects with mutual interreflections,
like the blue color bleeding from DRAGON to BUNNY.

Cwtk = Yk(ωt) ωt (11)

Ck ≈

6×32×32

∑
t=1

L(ωt)Cwtk . (12)

Note that Eq. (11) and Eq. (12) represent a discretization of Eq. (9)

that can be mapped to a scan program on the GPU. The same

compute program can be used to estimate Cvk (see Eq. (10)). Here,

we render a cube map at each vertex v. To estimate the visibility

V , the object is colored black and rendered into a white cube map.

Additionally, we account for cosθt by using the angle θt between

the vertex normal and the direction of ωt leading to Eq. (13). Note

that the cosine is clamped to the interval [0,1] to integrate the

visible hemisphere only.

Cvk ≈

6×32×32

∑
t=1

V (ωt) cos θt Cwtk (13)

5 RENDERING ON THE CLIENT

Due to the described separation of illumination, the final image

generation on the client only requires lightweight operations for

a mobile device with limited rendering capabilities: For each

VAL, we compute the direct radiance and visibility using shadow

mapping Eq. (7). This is added to the indirect illumination which

is computed per vertex by applying Eq. (8) using the stored coef-

ficients Cvk and the transferred coefficients Ck. To display virtual

shadows with correct brightness, we use differential rendering and

subtract direct radiance in the virtual shadows.

To improve the rendering performance, we use a tile-based

deferred shading based on Andersson [45]. Compared to simple

forward rendering and non-tiled deferred rendering, a tile-based

approach reduces overdraws to a minimum because each final

screen texel is processed only once. Additionally, the G-Buffer

(see Figure 9) needs to be read only once, which improves

performance since memory accesses are expensive.

In the first pass, the reconstructed and the virtual scene are

rendered into one G-Buffer containing projection space depth,

world space normal, diffuse reflection coefficients, and indirect

radiance as well as flags to distinguish virtual from real objects

(see Figure 9). To avoid unnecessary geometry processing, we

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 7

Depth Normal + Flags Diffuse Indirect Radiance
D32 R10G10B10A2 R8G8B8A8 R8G8B8A8

Fig. 9. G-Buffer: an off-screen buffer containing geometry and material
information of the reconstructed and virtual scene per pixel.

calculate the indirect radiance for virtual objects by PRT in the

vertex shader. Hence, we need to render the scene only once,

except for the shadow map generation described later in this

section.

The second pass handles light calculations and the composition

of the augmented image in one single compute shader program.

Thus, the screen is divided into tiles of 8 × 8 texels – which

performed best in our tests – that are processed by a thread group

of 64 threads per tile. Each thread then executes the following

steps:

1) Read the background image and G-Buffer data for

the corresponding texel and construct the view frustum

around the tile. Near and far plane are determined by the

minimum and maximum occurring depth value within the

tile.

2) Cull the VAL assigned to the thread if the view frustum

is entirely in the negative hemisphere of the VAL. Due to

the Lambertian emission of the VALs, such a VAL does

not contribute to the illumination of the tile. Because of

the group size, 64 VALs can be treated simultaneously.

If there are more VALs than threads per tile, this process

is performed in a loop. Lights not culled are added to a

shared list, containing m ≤ M visible VALs.

3) Perform visibility and shading operations to illuminate

the surface position x at the texel by all remaining m

VALs in the group shared VAL list. For differential

rendering, we accumulate the radiance LVAL j
of all VALs

depending on the texels’ flags. For texels marked virtual

we store radiance that is not shadowed, neither by real

nor by virtual objects. For non-virtual texels, we store

radiance that is shadowed by virtual but not by real

objects. In essence, we estimate the light that should be

missing because of new virtual shadows.

4) Combine the results of step 3, the background color, and

the indirect radiance using Eq. (14) for texels marked and

not marked as virtual. The visibility at x from VAL j in

the reconstructed scene is referred to as Vj, where V̂j is

the visibility in the virtual scene.

L =



















LInd +
m

∑
j=1

Vj ·V̂j ·LVAL j
if virtual

Lbackground −

m

∑
j=1

Vj · (1−V̂j) ·LVAL j
otherwise .

(14)

As described earlier, we use two shadow maps per VAL to cover

shadows from reconstructed and virtual objects [16], [23]. This

is necessary to prevent virtual objects from casting shadows

through real objects (see Figure 10b). Using only one shadow

map containing the closest distance in light space can lead to

(a) (b)

Fig. 10. Two shadow maps per VAL (a) are required to avoid double
shadowing from virtual objects (dashed contour) in regions that are
shadowed in the real environment (b).

correct shadows (green). But without the distance of the closest

reconstructed object we are not able to identify the correct shadow

receiver and add wrong shadows (red) on every further surface.

Hence, we need 2M shadow maps for direct illumination with M

VALs, which is not feasible for large M in real-time. To reduce

the geometry processing overhead we update 16 shadow maps at

once by using a geometry shader for duplicating the primitives

and rendering to multiple viewports simultaneously. Therefore,

we organize our shadow buffer in a texture array containing 4×4

shadow maps per slice (see Figure 10a). To adjust to the narrow

time budget, we update only one slice of the virtual shadow

buffer and one slice of the reconstructed shadows per frame. The

update order follows round robin, but currently updated VALs

are preferred. To obtain good shadows with low resolution we

construct each shadow frustum to closely fit all visible virtual

objects and use this frustum for both virtual and reconstructed

shadows maps. The reconstructed geometry between light and near

plane is projected onto the near plane.

6 RESULTS

In this section, we will report the results that are obtained by

our distributed approach for augmenting live camera streams with

virtual objects illuminated by the dynamically captured real world

environment. All performance experiments for rendering were run

on a Microsoft Surface Pro with Intel i5-3317U CPU, 1.7 GHz,

4 GB RAM and Intel HD Graphics 4000. The stationary PC used

for image acquisition and calculation of the light model parameters

was equipped with an AMD Phenom II X4 965 CPU, 3.4 GHz, 8

GB RAM and an NVIDIA GeForce 580 GTX.

For comparison in quality and performance we decided to

evaluate the synthetic CORNELL SCENE used in Sec. 4 to avoid

inaccuracies caused by the camera sensors and lenses as well

as during the reconstruction process. Nevertheless, results of real

world scenarios are demonstrated in the later part of this section.

The scene was designed to be as simple as possible while showing

the most important interactions between real and virtual objects.

In particular, there are shadows from virtual on real objects and

vice versa, virtual objects occluding real objects and vice versa,

and there is a strong indirect light that causes color bleeding. The

radiance of the small light at the ceiling is 15 W/srm2 and thereby

5 times brighter than the window with 3 W/srm2. The scene is

augmented by a BUNNY with 2.5k triangles and the resolution of

the G-Buffer is 960×540, where not otherwise stated.

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 8

6.1 Comparison

To evaluate our approach we compare it with a standard VPL-

based lighting, PRT and different combinations of light clustering

and splitting into direct and indirect light. To achieve fair results,

we used the same renderer with all optimizations by tiled render-

ing and simplifications during shadow map updates for rendering

VPLs as we do in our case. For PRT we were also using the G-

Buffer to treat occlusions between real and virtual objects as well

as the same calculation of indirect light used in our approach, but

we disabled all direct light calculations and shadow map updates

since they cannot be used with PRT. Figure 11 shows results of the

different methods depending on the number of direct light sources.

For the synthetic scene we created a path traced reference image,

depicted in the lower right corner. Above this ground truth solution

the result of simple PRT without any directional lights is shown.

In the first row, the classic Monte Carlo-based VPL lighting is

depicted. To generate VPLs, the radiance atlas was sampled using

the gray scale intensity as density function p. While the position

is directly read from the atlas at sample position s, the radiant

intensity of the resulting VPL is calculated by:

IV PL =
1

NV PL

·
Is

ps

, (15)

where NV PL is the number of VPLs (assuming a diffuse surface).

The second row combines the classic VPL lighting with

our light separation. Instead of sampling the complete radiance

atlas, we just sample the direct light atlas (see Figure 7a). The

indirect light is compressed to spherical harmonics as we do in

our approach. The third row shows clustered VPLs without light

separation. In this case, we apply our direct light clustering step to

the classical VPL method. Here we draw 4k samples, cluster them

by k-Means and integrate the radiance atlas to result in one VPL

for each cluster, as described in Sec. 4.3. The last row contains the

final results of our approach with light separation and clustering.

6.2 Evaluation

In comparison with the ground truth image, the result of the PRT

method shows significant differences. Besides the lack of shadows,

there is a visible shift in the color of shading. The environment

coefficients used for this image were derived from a cube map

rendered at the object center from where the bright red wall is

only slightly visible. This explains the cold tone of the image and

why PRT alone is not a good choice for near-field illumination,

even though the measured timings are best.

Evaluating the classical VPL approach confirms the expected

behavior known from instant radiosity implementations [22], [23],

[40]. A large number of lights is required to converge against the

correct solution. We stopped at 512 sources, which produced a

result close to the reference image in 503 ms.

By separating high-frequency from low-frequency light the

regions to sample for VPL generation become smaller. In com-

bination with PRT-based low-frequency illumination, the visual

quality of the results increases, especially for a low number of

light sources. Because of the smaller sample regions, the point

lights concentrate in bright areas, which leads to more plausible

shadows as second benefit. The additional computation cost for

PRT lighting is constant and rather low compared to the direct

lighting. Note that these two methods without light clustering are

not coherent over time for smaller light counts. This results in

a distracting flickering and is not suitable in most scenarios. To

provide an impression, we refer to the accompanying video.

The experiments with clustered VPLs showed an improved

spatial coherence but did not lead to a temporal coherent illumina-

tion because of the large cluster sizes that need to cover the whole

radiance atlas. For the client, there is no difference to classical

VPLs in terms of calculations for lighting, which was confirmed

by equal timings.

The results of our approach, depicted in the last row, contain

features of both improvements. The separation of the radiance

atlas leads to smaller areas to be sampled, hence the light sources

concentrate in the brightest regions. The additional clustering leads

to coherent light positions and thus coherent virtual shadows. It

also allows to integrate the area per light and to approximated

the shape by a disc. Hence, virtual objects close to light sources

do not show the singularities of classic point lights. Considering

the measured timings, there is no difference compared with the

approach in row two, since there is no difference in rendering

on the client side. Comparing the images created with varying

numbers of VALs reveals only slight differences in the shading of

the virtual object. The most obvious distinction can be found in

the quality of the shadows, especially at the transition from the

virtual to the real shadow cast by the yellow board. A drawback

of our approach can be observed in the shadowed region of the

BUNNY which is too bright in comparison with the reference

image. One reason for that is the limited number of SH coefficients

Ck and the lack of details in the reconstructed indirect light.

Another influencing factor is that the cube map is only valid for

the center of the virtual object. Other locations on the virtual

object, e.g., below the yellow board, have a slightly different

environment illumination. This problem could be addressed by

evaluating the indirect light at multiple locations and interpolating

the SH coefficients per vertex during rendering which leads to

an approach similar to irradiance volumes [46]. Finally, there is

another aspect that contributes to a too bright indirect lighting.

The indirect radiance estimation at the center of the virtual object

by cube map rasterization does not consider the shadows cast by

any virtual objects.

6.3 Light Extraction Performance

All tasks executed by the server are implemented on the GPU.

Since the results are transmitted asynchronously, the computations

do not affect the rendering performance discussed in the next

paragraph. However, an interactive update rate improves the visual

quality of the rendering while moving virtual objects and reduces

the time that is needed to respond to changes in the dynamic

environment. Table 1 contains the timings measured with our

current implementation. The individual steps are not executed in

the listed order. The first block is only required if the tracking sys-

tem reported a moving real object. The operations on the camera

images in the second block are applied only if a camera captured

a new image during the last iteration. The latter is influenced by

the type and number of cameras used, their resolution, and the

available bandwidth for the transfer to the GPU.

The time to update the indirect light coefficients depends on

the number of virtual objects. Figure 12 illustrates the increasing

effort with growing number of virtual objects. As described in

Sec. 4.4, we include the other virtual objects to take account

of indirect transmission between the objects. Hence, the time

required for rendering a cube map increases with the number of

objects while the duration for compressing the cube maps into SH-

coefficients is constant. Note that the time to update the indirect

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 9

c
la

s
s
ic

a
l
V

P
L
s

c
lu

s
te

re
d
 V

P
L
s

o
u
rs

9
5
%

 c
lu

s
te

re
d
 V

A
L
s
 +

 5
%

 P
R

T

P
R

T
 o

n
ly

8 16 32 64 256 512

g
ro

u
n
d
 t
ru

th

Lights

s
e
p
a
ra

te
d
 L

ig
h
t

9
5
%

 c
la

s
s
ic

a
l
V

P
L
s
 +

 5
%

 P
R

T
25.7 ms 81.5 ms 260 ms 503 ms36.8 ms 51 ms

26.3 ms 82.2 ms 261 ms 504 ms37.5 ms 52 ms

25.8 ms 82 ms 7.1 ms36.4 ms 51.4 ms

26.4 ms 82.2 ms37 ms 51.8 ms 192 s

Fig. 11. Comparison with classical VPL lighting, PRT and combinations

TABLE 1
Timing breakdown in ms for the stationary PC at an atlas resolution of
1024×1024, 4 HDR cameras, 4k direct light samples and 16 clusters

with 20 iterations per clustering step.

Update Atlas (for dynamic scenes)
Position, normals and area 0.5 ms
Dilatation 1.33 ms
Acquiring the Radiance Atlas (* per camera)
Acquire color image * 2.35 ms
Render depth image * 0.26 ms
Project into atlas * 0.44 ms
Combine radiance atlas 0.58 ms
Splitting the Radiance Atlas
Find separating threshold 9.1 ms
Split into direct and indirect atlas 0.53 ms
Finding Direct Light Sources
Sampling (4k Samples) 6.67 ms
k-Means clustering (M=16) 7.3 ms
Integrating cluster radiances 17.5 ms

light without interaction between virtual objects would be equal

to the duration measured for one virtual object. The rendering of

an extra cube map with direct and indirect light is not necessary

in this case.

0 0.5 1 1.5 2 2.5 3

8

4

3

2

1

Update Duration per Object (ms)

st
c

ej
b

O l
a

utri
V

Cube Map Ind.

Projection Ind.

Cube Map Dir. + Ind.

Projection Dir. + Ind.

Fig. 12. Timings for updating the indirect light coefficients per object.
Measured in the CORNELL SCENE with multiple virtual BUNNIES.

6.4 Rendering Performance

As noted in Sec. 5, the tile-based approach reduces the number of

geometry processing passes, overdraw, and G-Buffer accesses per

texel. Nevertheless, the G-Buffer resolution is the most dominant

factor on the rendering performance. Figure 13 illustrates the

increasing time per frame with growing light count and resolution.

In consequence of the tiled rendering the timings grow almost

linearly with the number of rendered tiles.

In Figure 14 the frame timings are broken down to five

steps. The acquisition of the background image, the rendering of

reconstructed shadows, and the generation of the G-Buffer are

independent of the number of VALs. The update of 16 virtual

shadow maps takes 2.2 ms if 16 or more lights are present.

The largest part of the time is spent on calculating the direct

illumination and visibility. After a constant offset, the required

time increases linearly with the number of lights.

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 10

0

50

100

150

200

250

300

8 16 32 64

)
s

m(
e

mi
T

e
m

ar
F

Direct Light VALs

1920 x 1080

1440 x 810

1280 x 720

960 x 540

640 x 360

Fig. 13. Influence of the G-Buffer resolution on the frame time. Timings
measured for augmenting the CORNELL SCENE with the virtual BUNNY.

0 10 20 30 40 50 60 70 80

8

16

32

64

Frame Time (ms)

s
L

A
V t

h
gi

L t
c

eri
D

Acquire Background

Reconstructed Shadows

Virtual Shadows

Generate G-Buffer

Tiled Lighting

Fig. 14. Timings with respect to the number of VALs measured for
augmenting the CORNELL SCENE with the virtual BUNNY broken down
and accumulated.

Because of the deferred rendering, the impact of geometry

complexity on performance is assumed to be low as each model

has to be rendered only once to generate the G-Buffer. The result

of the evaluation with virtual models of different complexity

is depicted in Figure 15. As anticipated, the time required to

create the G-Buffer increases with the number of primitives, up

to 10 ms for 260k triangles. The other step that needs to render the

virtual geometry is the update of the virtual shadows. Since we

are processing 16 shadow maps per iteration, the duration grows

exponentially up to 216 ms for the largest model. Fortunately, this

large number is not relevant in practice, since low-poly models

can be used for rendering shadow maps of low resolution. Hence,

a few hundred primitives are sufficient for the 128× 128 shadow

maps we used in our examples, and highly detailed models are

only required during the G-Buffer generation.

6.5 Real World Scenarios

To measure the real-world radiance values, we use Matrix Vision

mvBlueFOX-IGC200 HDR video cameras with 180 degrees fish-

eye lenses. For tracking, we use OptiTrack with 12 infrared

cameras, capturing a range of approximately 3×2 meters.

Figure 16 contains an overview of an acquired real scene. The

first row shows the input of three different cameras. To illustrate

the corresponding reconstructed scene, we rendered the wire-

frame model as overlay. The second row shows the projections of

the camera images into the atlas where flaws in the reconstruction

and the registration of the cameras become visible. The merged

atlas (left), the direct light atlas (center) and the indirect light

atlas (right) are depicted in the last row. Note that some ghosting

artifacts caused by the mentioned inaccuracies become visible,

0 40 80 120 160 200 240

2.5k

28.1k

42.5k

260k

Frame Time (ms)

s
el

g
n

air
T l

a
utri

V

Acquire Background

Reconstructed Shadows

Virtual Shadows

Generate G-Buffer

Tiled Lighting

Fig. 15. Timings with respect to vertex count measured for augmenting
the CORNELL SCENE with different virtual models and 16 lights broken
down and accumulated.

Fig. 16. Real scene acquired by three cameras (first row). Images
projected into the atlas (second row). Merged, direct and indirect atlas
(last row from left to right).

Fig. 17. A virtual BUNNY in front of its real counterpart, illuminated by a
local light source (top) and a strong indirect light (bottom). In both cases,
the sender becomes invisible after user movement.

but their influence on the final result is low as long as the receiver

material is diffuse and the overall radiance matches the real light

conditions.

Figure 1 shows the consistent appearance of a 3D-printed and

a virtual BUNNY side-by-side. We added a real and a virtual color

checker to show the quality of the reproduced colors. To verify

the correct capture process of the near-field illumination, we place

the BUNNY close to a local light source and a strong indirect

light, as shown in Figure 17. An interactive session from the

accompanying video is shown in Figure 18, demonstrating both

temporally and spatially varying illumination. The performance

in real and synthetic scenes has been very similar in all our

experiments. This is because the cost for transferring the mobile

camera image to VRAM and the cost for rendering the synthetic

background image compensate each other.

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 11

Fig. 18. Moving tracked objects: Initial configuration (top left), user
switches on the light and rotates the BUNNY at 27 fps (top right), red
color bleeding disappears when the box is moved away (bottom left)
and direct light changes after light movement (bottom right).

(a) (b)

Fig. 19. A synthetic (a) and a real scene (b) augmented by objects
with non-diffuse BRDFs. Both images show a glossy DRAGON, a glass
BUNNY and a metallic OTTO bust.

6.6 Non-diffuse BRDFs

Because of the compression used for the indirect light we are

limited to diffuse BRDFs. However, this limitation can be ignored

to enable non-diffuse materials by accepting a result that is

physically not completely correct.

In Figure 19 different non-diffuse BRDFs are used to show

that the augmentations are still plausible. The glossy DRAGON

on the left has a Blinn-Phong material [47]. The OTTO bust on

the right is shaded with a modified version of our Blinn-Phong

material using a rescaled Schlick approximation of the Fresnel

term [48] and the BUNNY in the center is rendered with an image

space effect to convey the impression of glass. We explain each of

these approximations in the following.

Glossy and metallic materials To be able to support different

shading models, a few modifications to the rendering pipeline are

required and the G-Buffer needs to store additional properties.

The VALs are still used for direct rendering but this time the

reflectance can change per object or, more precisely, per texel

of the G-Buffer. The diffuse indirect lighting, computed by PRT,

is still available and can be used by the different materials if

desired. In contrast to pure diffuse materials where the irradiance

from each VAL can be computed analytically and the amount of

reflected light is defined by the constant reflection coefficient ρ ,

the reflection on glossy materials is view-dependent and thereby

more complex. For a correct solution one needs to integrate

over the area light source and accumulate the reflected radiance

because the BRDF is not constant anymore. To meet the real-time

performance requirements, we only use the center of the VAL

as a representative sample. For the glossy BRDF we used this

approximation and applied the diffuse lighting by PRT leading to

a multi-layered material.

For glossy and metallic materials, we added another G-Buffer

layer to store specular reflection coefficients and a roughness

value. The rescaled Schlick reflection model involves reflection

indices with real and imaginary parts instead of diffuse and

specular coefficients so we use these slots to store reflection

indices for the three color channels. Since the indices are not

necessarily in the interval [0,1], the texture format of these two

G-Buffer layers is changed to R16G16B16A16. During the G-

Buffer generation we make use of Dynamic Shader Linkage where

each material is represented by a class that fills the buffer with

properties required by that material. The free alpha channel of

the diffuse layer is used to store an ID to identify the material

per texel. During the illumination step of the deferred lighting the

same classes are used to evaluate a BRDF function based on the

stored ID. This approach allows to apply various different BRDFs

as long as the parameters fit into the G-Buffer and the objects are

fully opaque.

Note that due to the missing high-resolution environment im-

ages on the tablet, we cannot display highly glossy virtual objects.

Instead of reflections of all parts of the real environment, only

the highlights of the extracted VALs are visible. Since metallic

materials reflect all incoming light at the surface, there is no dif-

fuse reflection which technically is a coarse approximation of sub-

surface scattering. Hence, we do not apply diffuse illumination by

PRT in this case, which is the reason for the darker backsides of

the busts. As noticeable on the left of the dragons in Figure 19,

the indirect illumination for glossy materials is still only diffuse

and thereby not plausible for glossy objects.

Translucent materials Non-opaque objects are more complex

because another layer is required to allow translucent objects in

front of opaque virtual or real surfaces. For the glass shader, the

G-Buffer is extended by two depth layers, one for front and one

for back faces to estimate the thickness of the glass object. It

is also required to introduce another normal buffer to calculate

direct illumination, reflection and refraction on the glass surface.

The free alpha channel is used to store a flag that indicates whether

there is a translucent object at that certain texel or not. If the flag

is set during the illumination step, we calculate the direct lighting

for the second layer, too and write the accumulated radiance into

another output buffer. Note that the opaque objects are processed

as before without any influence of this second layer.

Finally, a Post-effect is applied to the augmented image

already containing opaque virtual objects. For this effect we

evaluate the reflection and refraction ray for each texel with the

translucency flag set. Instead of using a more correct ray marching

approach we simply project both rays into the augmented image

space and use them as offsets to sample corresponding color

values. This coarse approximation results in reasonable reflections

and refractions if the sampling distance is adjusted properly and

the relevant areas are visible in the image. The thickness of the

translucent objects is used to estimate a transmittance T based

on the Beer-Lambert law. Eq. 16 shows the final composition for

marked texels where f is the approximated Fresnel term:

L = max(f Lre f lected ,Ldirect)+(1− f) T Lre f racted . (16)

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 12

100

120

140

160

180

8 16 32 64

)
%(r

ot
c

a
F

e
mi

T
e

m
ar

F Direct Light VALs

Di�use

Glossy

Glass

Fig. 20. Rendering overhead on the client for augmenting the CORNELL

SCENE with a glossy or a glass BUNNY compared to the former diffuse
BRDF, respectively. The overhead factor was measured for different
numbers of VALs for direct lighting.

We use the maximum function to get reflections of all frequencies

from the image space approach and highlights introduced by

sources not directly visible in the image by calculation from VALs.

Note that highlights generated by image space reflections are prob-

ably too dark because the live camera stream is not an HDR stream

and visible light sources are clamped because of saturated texels.

Additionally, the shadows of our translucent objects are incorrect,

because caustics, which are the result of a correct transmission

of light through glass, are also not part of the approximation and

thereby a topic of further investigation. Overall, this treatment of

glass objects is far away from a physically correct solution but it

shows how our approach can be extended to meet the requirements

of applications with higher visual complexity.

These changes also have an impact on the performance of the

rendering client. The shader classes and the changed G-Buffer

layer formats introduced for glossy and metallic BRDFs result

in a constant overhead of about 2− 3 % compared to the diffuse

material. For rendering glass objects, the additional direct lighting

and the Post-effect are leading to an overhead that increases with

the number of VALs (see Figure 20).

6.7 Discussion of Parameters

Direct and Indirect Light In Sec. 4.2 we introduced a

user parameter τ to control the threshold for splitting direct from

indirect light. Figure 21 shows the influence of the parameter

selection on the visual quality of the result using different numbers

of VALs. The parameter τ defines the percentage of the overall

measured radiance, the direct light accounts to. This implies that

a low percentage leads to smaller area lights that concentrate in

bright regions while large percentages result in larger areas to be

sampled (visualized in the first row). Thereby, higher percentages

allow other bright areas to be treated as direct, shadow casting light

sources. At the same time, increasing τ also leads to decreasing

intensity because the area grows while the uniformly distributed

average radiance is declining since only darker texels are added

to clusters. For very large τ , like in the rightmost column, this

leads to wide VALs with relatively low intensity. The effect is

even stronger when using a low number of VALs, which results

is an ambient like shading. Note that these results differ from the

approach of clustered VPLs discussed in Sec. 6.2. Here, point

lights with area independent intensities are used, where singulari-

ties occur when shading surfaces close to the light position. While

selecting a very high τ causes problems, a very low percentage can

enhance the visual quality when using a low number of VALs in a

scenario with one or two small bright light sources. In this case, the

VALs have a small area and are placed close to each other leading

to soft shadows (see columns on the left). With increasing τ the

light sources drift apart casting shadows from different directions

(see columns on the right). In general, one requires more VALs

to achieve soft shadows for higher direct light percentages. In our

examples, we used 75−98 % of the total radiant intensity for the

direct light.

Resolution of the Atlas In our experiments the atlas resolution

was 1024× 1024 in the R32G32B32A32 format which roughly

matches the resolution of the environment cameras. If a camera

is very close to the real surface it is possible that valuable

information gets lost because of a lower atlas resolution that covers

that surface. We consider this an unlikely situation, because in real

world applications the cameras will be placed at a certain distance

from regions of interest to not distract the users. Furthermore,

in digital content creation it is very common to allocate more

space for such interesting regions during the atlas parametrization

which overcomes this concern if the positions of the environment

cameras are known. However, if it is required to increase the atlas

resolution the performance impact is restricted to the server.

Resolution of the Cube Maps for indirect Light It is

not required to use high resolution cube maps for estimating the

indirect light for virtual objects because the SH-projection does

not preserve details. If there are fine bright details with visible

impact that are smaller than one cube map texel it is very likely

that those details should be treated as direct light instead. However,

if there are small important details that are not bright enough to

be considered direct radiance, these surfaces have to be very close

to the virtual object. In this case the surface will be represented

in a larger area of the cube map and thereby handled with little

errors. We used a 32× 32× 6 R32G32B32A32 cube map for our

experiments. We do not recommend lower resolutions since the

results can start flickering when moving or rotating the objects.

Using higher resolutions showed no improvements.

7 CONCLUSIONS AND FUTURE WORK

We demonstrated that augmented reality with consistent illumi-

nation is possible on current mobile devices at interactive frame

rates. To achieve this, we developed a lighting method that shares

the computation effort among a stationary PC and the participating

mobile device. The amount of data to be exchanged between both

is reduced, avoiding a bottleneck in transmission due to limited

bandwidth. Multiple mobile devices are supported without addi-

tional overhead in terms of lighting calculation and transmission

since the parameters of the light model are valid for all devices

and can be broadcasted. We captured the near-field illumination

of indoor scenarios with multiple HDR video cameras and use

this as information for the illumination of the virtual objects. The

virtual objects can be moved freely with a consistent illumination

at any position and adapt to temporal changes in the incident

illumination, although the sources of light are not visible to the

tablet camera. Although our system is designed for diffuse virtual

objects, we also introduced a first approximation for a plausible

display of glossy materials.

At present, we place the HDR cameras manually such that

all relevant regions are visible in at least one of the cameras.

However, if there are regions not visible to any camera, some

of the illumination might be missing. To overcome this problem,

we want to evaluate a dynamic, tracked HDR camera that can

be moved to such invisible regions in the future. This additional

information also improves the quality of the captured light sources,

since a few static cameras are not enough to capture a goniometric

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 13

25% VALs 75% PRT
3
2
 V

A
L
s

8
 V

A
L
s

75% VALs 25% PRT 90% VALs 10% PRT 95% VALs 5% PRT 99% VALs 1% PRT

Fig. 21. Comparison of different percentages τ to split direct from indirect light and the impact on the final result using different numbers of VALs.

diagram of a complex light source. The same applies to the capture

process of real objects with non-diffuse materials. Since portable

3D sensors are available, dynamic capturing of the geometry and

materials is also interesting [33]. Currently, we do not include

the indirect illumination which is reflected from the virtual object

to the real scene. This could be added by analyzing the radiance

distribution on the virtual object and the placement of virtual light

sources onto the virtual object. To improve the shadow quality, a

soft shadow could be displayed for each area light, similar to [43].

Our method supports manipulation of virtual objects with

correct illumination at interactive rates, but the update rates of

the direct light sources are lower since they are only updated

after a complete iteration of the server pipeline (as visible in the

accompanying video). Additionally, we neither predict the VAL

positions on the client side nor blend between updated and former

VALs, which would both hide this latency.

Note that our hardware setup allows for working in a dynamic

environment with moving real objects and under changing light

conditions. For static environments one could use only the mobile

devices to capture the surroundings in a preprocess and track

visual features for estimating the device position. The presented

approach works in this setting without the complex hardware

setup, too.

ACKNOWLEDGMENTS

This work was sponsored by grant no. GR 3833/2-1 and DA

1319/2-1 of the German Research Foundation (DFG).

REFERENCES

[1] G. W. Fitzmaurice, S. Zhai, and M. H. Chignell, “Virtual reality for
palmtop computers,” ACM Transactions on Information Systems, vol. 11,
no. 3, pp. 197–218, 1993.

[2] A. Fournier, A. Gunavan, and C. Romanzin, “Common illumination be-
tween real and computer generated scenes,” in Proc. Graphics Interface

(GI), 1993, pp. 254–262.

[3] G. Drettakis, L. Robert, and S. Bougnoux, “Interactive common illumi-
nation for computer augmented reality,” in Rendering Techniques, 1997,
pp. 45–56.

[4] C. Loscos, M. Frasson, G. Drettakis, B. Walter, X. Granier, and P. Poulin,
“Interactive virtual relighting and remodeling of real scenes,” in Proc.

EGWR, 1999, pp. 329–340.

[5] P. Debevec, “Rendering synthetic objects into real scenes: Bridging
traditional and image-based graphics with global illumination and high
dynamic range photography,” in Proc. SIGGRAPH ’98, 1998, pp. 189–
198.

[6] I. Sato, Y. Sato, and K. Ikeuchi, “Acquiring a radiance distribution to
superimpose virtual objects onto a real scene,” IEEE Transactions on

Visualization and Computer Graphics, vol. 5, no. 1, pp. 1–12, 1999.

[7] T. Grosch, “Differential photon mapping: Consistent augmentation of
photographs with correction of all light paths,” in Eurographics Short

Papers, 2005, pp. 53–56.

[8] M. Corsini, M. Callieri, and P. Cignoni, “Stereo light probe,” Computer

Graphics Forum, vol. 27, no. 2, pp. 291–300, 2008.

[9] J. Unger, S. Gustavson, P. Larsson, and A. Ynnerman, “Free form
incident light fields,” Computer Graphics Forum, vol. 27, no. 4, pp.
1293–1301, 2008.

[10] K. Karsch, V. Hedau, D. Forsyth, and D. Hoiem, “Rendering synthetic
objects into legacy photographs,” ACM Transactions on Graphics (Proc.

SIGGRAPH Asia), vol. 30, no. 6, pp. 157:1–157:12, 2011.

[11] K. Jacobs and C. Loscos, “Classification of illumination methods for
mixed reality,” Computer Graphics Forum, vol. 25, no. 1, pp. 29–51,
2006.

[12] M. Kanbara and N. Yokoya, “Geometric and photometric registration for
real-time augmented reality,” in Proc. ISMAR, 2002, pp. 279–280.

[13] K. Agusanto, L. Li, Z. Chuangui, and N. W. Sing, “Photorealistic
rendering for augmented reality using environment illumination,” in
Proc. ISMAR, 2003, pp. 208–216.

[14] M. Haller, S. Drab, and W. Hartmann, “A real-time shadow approach for
an augmented reality application using shadow volumes,” in Proc. VRST,
2003, pp. 56–65.

[15] S. A. Pessoa, G. de S. Moura, J. P. S. M. Lima, V. Teichrieb, and J. Kelner,
“Photorealistic rendering for augmented reality: A global illumination
and BRDF solution,” in Proc. Virtual Reality (VR), 2010, pp. 3–10.

[16] S. Gibson and A. Murta, “Interactive rendering with real-world illumina-
tion,” in Proc. EGWR, 2000, pp. 365–376.

[17] S. Gibson, J. Cook, T. Howard, and R. Hubbold, “Rapid shadow gen-
eration in real-world lighting environments,” in Proc. EGSR, 2003, pp.
219–229.

AUTHOR’S VERSION, TO APPEAR IN: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, DOI 10.1109/TVCG.2015.2450717 14

[18] T. Grosch, “PanoAR: Interactive augmentation of omni-directional im-
ages with consistent lighting,” in Mirage, Computer Vision / Computer

Graphics Collaboration Techniques and Applications, 2005, pp. 25–34.

[19] V. Havran, M. Smyk, G. Krawczyk, K. Myszkowski, and H.-P. Seidel,
“Importance sampling for video environment maps,” in ACM SIGGRAPH

2005 Sketches, 2005.

[20] M. Korn, M. Stange, A. von Arb, L. Blum, M. Kreil, K. Kunze,
J. Anhenn, T. Wallrath, and T. Grosch, “Interactive augmentation of live
images using a HDR stereo camera,” in GI VR/AR, 2006, pp. 107–118.

[21] T. Grosch, T. Eble, and S. Mueller, “Consistent interactive augmentation
of live camera images with correct near-field illumination,” in Proc.

VRST, 2007, pp. 125–132.

[22] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wimmer,
“Differential instant radiosity for mixed reality,” in Proc. ISMAR, 2010,
pp. 99–107.

[23] M. Knecht, C. Traxler, O. Mattausch, and M. Wimmer, “Reciprocal
shading for mixed reality,” Computers & Graphics, vol. 36, no. 7, pp.
846–856, 2012.

[24] P. Kán and H. Kaufmann, “Differential progressive path tracing for high-
quality previsualization and relighting in augmented reality,” in Advances

in Visual Computing, G. Bebis, Ed. Springer-Verlag Berlin Heidelberg,
2013, pp. 328–338.

[25] T. A. Franke, “Delta light propagation volumes for mixed reality,” in
Proc. ISMAR, 2013, pp. 125–132.

[26] P. Kán and H. Kaufmann, “High-quality reflections, refractions, and
caustics in augmented reality and their contribution to visual coherence,”
in Proc. ISMAR, 2012, pp. 99–108.

[27] D. Nowrouzezahrai, S. Geiger, K. Mitchell, R. Sumner, W. Jarosz,
and M. Gross, “Light factorization for mixed-frequency shadows in
augmented reality,” in Proc. ISMAR, 2011, pp. 173–179.

[28] M. Aittala, “Inverse lighting and photorealistic rendering for augmented
reality,” The Visual Computer, vol. 26, no. 6-8, pp. 669–678, 2010.

[29] D. A. Calian, K. Mitchell, D. Nowrouzezahrai, and J. Kautz, “The shad-
ing probe: Fast appearance acquisition for mobile AR,” in SIGGRAPH

Asia Technical Briefs, 2013, pp. 20:1–20:4.

[30] Y. Yao, H. Kawamura, and A. Kojima, “The hand as a shading probe,” in
ACM SIGGRAPH Posters, 2013, pp. 108:1–108:1.

[31] C. B. Madsen and B. B. Lal, “Outdoor illumination estimation in image
sequences for augmented reality,” in Proc. GRAPP, 2011, pp. 129–139.

[32] J. Jachnik, R. A. Newcombe, and A. J. Davison, “Real-time surface
light-field capture for augmentation of planar specular surfaces,” in Proc.

ISMAR, 2012, pp. 91–97.

[33] P. Lensing and W. Broll, “Instant indirect illumination for dynamic mixed
reality scenes,” in Proc. ISMAR, 2012, pp. 109–118.

[34] M. Meilland, C. Barat, and A. Comport, “3D High Dynamic Range
Dense Visual SLAM and Its Application to Real-time Object Re-
lighting,” in Proc. ISMAR, 2013, pp. 143–152.

[35] L. Gruber, T. Richter-Trummer, and D. Schmalstieg, “Real-time photo-
metric registration from arbitrary geometry,” in Proc. ISMAR, 2012, pp.
119–128.

[36] L. Gruber, T. Langlotz, P. Sen, T. Hoellerer, and D. Schmalstieg, “Effi-
cient and robust radiance transfer for probeless photorealistic augmented
reality,” in Proc. Virtual Reality (VR), 2014, pp. 91–97.

[37] M. Csongei, L. Hoang, C. Sandor, and Y. B. Lee, “Global illumination for
augmented reality on mobile phones (Poster),” in Proc. Virtual Reality

(VR), 2014, pp. 69–70.

[38] E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements
of early vision,” in Computational Models of Visual Processing, 1991,
vol. 1, no. 2, pp. 3–20.

[39] T. Ritschel, C. Dachsbacher, T. Grosch, and J. Kautz, “The state of the art
in interactive global illumination,” Computer Graphics Forum, vol. 31,
no. 1, pp. 160–188, 2012.

[40] A. Keller, “Instant Radiosity,” in Proc. SIGGRAPH ’97, 1997, pp. 49–56.

[41] P.-P. J. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments,”
ACM Transactions on Graphics (Proc. SIGGRAPH), vol. 21, no. 3, pp.
527–536, 2002.

[42] J. T. Kajiya, “The rendering equation,” Computer Graphics (Proc. SIG-

GRAPH), vol. 20, no. 4, pp. 143–150, 1986.

[43] Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel, “Real-time
indirect illumination with clustered visibility,” in Vision, Modeling, and

Visualization Workshop, 2009, pp. 187–196.

[44] R. Ramamoorthi and P. Hanrahan, “An efficient representation for irradi-
ance environment maps,” in Proc. SIGGRAPH ’01, 2001, pp. 497–500.

[45] J. Andersson, “Parallel Graphics in Frostbite - current & future,” SIG-

GRAPH Course: Beyond Programmable Shading, 2009.

[46] G. Greger, P. Shirley, P. M. Hubbard, and D. P. Greenberg, “The
irradiance volume,” IEEE Computer Graphics and Applications, vol. 18,
no. 2, pp. 32–43, 1998.

[47] N. Hoffman, “Physically based shading models for film and game
production,” in SIGGRAPH Course, 2010.

[48] I. Lazányi and L. Szirmay-Kalos, “Fresnel term approximations for
metals,” in WSCG (Short Papers), 2005, pp. 77–80.

Kai Rohmer works as a scientific researcher
in the Computational Visualistics Group at the
Department of Simulation and Graphics at the
University of Magdeburg, Germany. His research
interests include physically-based real-time ren-
dering as well as augmented reality on mobile
devices. He received his MSc in computer sci-
ence with distinction in 2012.

Wolfgang Büschel received his MSc in compu-
tational visualistics with distinction in 2012 and
is currently working toward the PhD degree at
the Interactive Media Lab at Technische Univer-
sität Dresden, Germany. His research interests
include natural user interfaces and advanced
interaction techniques for augmented reality.

Raimund Dachselt is university professor at
the Technische Universität Dresden, Germany,
where he heads the Interactive Media Lab Dres-
den. His background and research interest are
3D user interfaces, natural human-computer in-
teraction and information visualization. He has
published extensively, served in numerous pro-
gramming committees, and co-organized several
international conferences and workshops. Dr.
Dachselt is a member of the IEEE and the IEEE
Computer Society, ACM SIGCHI and SIGMM.

Thorsten Grosch is a junior professor at the
University of Magdeburg, Germany, where he
heads the Computational Visualistics Group at
the Department of Simulation and Graphics. His
research interests include both physically-based
and real-time global illumination methods for vir-
tual and augmented reality.

	1 Introduction
	2 Previous Work
	3 Overview
	3.1 Hardware Setup and Precomputations
	3.2 Distributed Illumination
	3.3 Pipeline Overview

	4 Server Computations
	4.1 Acquiring the Radiance Atlas
	4.2 Splitting the Radiance Atlas
	4.3 Finding Direct Light Sources
	4.4 Compressing Indirect Light

	5 Rendering on the Client
	6 Results
	6.1 Comparison
	6.2 Evaluation
	6.3 Light Extraction Performance
	6.4 Rendering Performance
	6.5 Real World Scenarios
	6.6 Non-diffuse BRDFs
	6.7 Discussion of Parameters

	7 Conclusions and Future Work
	References
	Biographies
	Kai Rohmer
	Wolfgang Büschel
	Raimund Dachselt
	Thorsten Grosch

