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Abstract
In neuroscience, the investigation of connectivity between different brain regions suffers from the lack of adequate solutions for
visualizing detected networks. One reason is the high number of dimensions that have to be combined within the same view:
neuroscientists examine brain connectivity in its natural spatial context across the additional dimensions time and frequency.
To combine all these dimensions without prior merging or filtering steps, we propose a visualization in virtual reality to realize
multiple coordinated views of the networks in a virtual visual analysis lab. We implemented a prototype of the new idea. In a
first qualitative user study we included experts in the field of computer science, psychology as well as neuroscience. Time series
of electroencephalography recordings evoked by visual stimuli were used to provide a first proof of concept trial.The positive
user feedback shows that our application successfully fills a gap in the visualization of high-dimensional brain networks.

1. Introduction

The field of experimental and clinical neuroscience constantly
gains importance [YGL17]. In particular, the investigation of di-
rected information transfer within the human brain is a growing
field of research. While methods for the analysis of brain anatomy
or brain-behavior relationships improve, large parts of the function-
alities of the human brain are yet to be discovered. Understanding
how the components of the complex neural network of the human
brain interact and affect each other is essential to understand and
treat psychological disorders or illnesses like Alzheimer’s disease,
epilepsy or forms of depression [BLM∗16, LZP∗10].
Interaction and inter-connectivity of neurons or brain regions is
called brain connectivity and can be separated into three categories
[FFK05]: structural connectivity refers to concrete neuroanatomi-
cal connections; functional connectivity describes the temporal cor-
relations between neurophysiological events of spatially neighbor-
ing or remote neuronal structures and finally, effective connectivity
is defined as the directed influence of one neuronal structure on
another, mediated directly or indirectly. This connectivity can be
derived from a variety of measuring modalities such as electroen-
cephalography (EEG), magnetoencephalography, positron emis-
sion tomography and functional magnetic resonance imaging.
The resulting brain networks are of high dimensionality, provid-
ing information about directed information transfer depending on
space (brain region), time and frequency. But how can such multi-
dimensional data be effectively visualized? Current solutions ei-
ther keep spatial context by showing reduced or aggregated data or
have crowded abstract visualizations [BRK∗17, FH16]. Aggrega-
tion leads to a loss of detail and the outcome depends on the pa-

rameters the data is aggregated upon. As abstract matrix-like visu-
alizations can visualize time and frequency dimensions of the com-
plex data, they lose the spatial context making it less intuitive and
more difficult to understand. In this work we developed a novel vi-
sual analysis tool in an 3D immersive virtual reality (VR) environ-
ment. It shows the entire propagation over time for multi-frequency
EEG-based brain connectivity while directly displaying the spatial
information of the connected brain areas. This visualization in VR
gives a more intuitive view of the data that provides the means for
exploratory data analysis.

2. Related work

Visualization of brain connectivity. Currently, the analysis of
brain connectivity [PKB∗14] suffers from a dilemma: on the one
hand it is necessary to consider all relevant dimensions – e.g.
anatomical arrangement, temporal variance, frequency. On the
other hand, drawing conclusions based on such complex views
of the complete networks containing all dimensions is hard to
achieve. A common solution to this problem is the reduction of
illustrated dimensions. This can be achieved by means of restrict-
ing the view to a hypothesis-driven pre-selection of cortical re-
gion / time interval / frequency band, or a previous agglomeration
of data [BRK∗17]. Another well-established approach is to apply
methods from graph theory in order to segregate the network into
brain regions with similar topological properties [FH16]. However,
in any case detailed information that has been recorded or derived
gets lost.
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Figure 1: Illustration of a synthetic five-node network. In subfig-
ure (a), a directed network containing D = 5 nodes is shown; (b)
provides the corresponding OD visualization.

Origin-destination flow visualization. The main goal of spa-
tially arranged origin-destination (OD) flow maps is to show di-
rected connections within a network corresponding to geographical
locations [Har00,BBBL11]. A commonly adapted visualization ap-
proach is to duplicate the map into source and sink; that means one
map represents the brain sources of information transfer and rep-
resents the brain destination of information transfer. A simulated
example is shown in Fig. 1. In 1(a), the network is drawn in form
of a node-link diagram. All connections (network edges) within the
network are represented by directed arrows between the network
nodes. In contrast, the OD representation in 1(b) shows the net-
work in form of two reference spaces, separating the network into
a set of sink nodes and one of source nodes.Immersive Visualiza-
tions. Immersive visualizations have been explored for many data
types like 3D graph layouts [KMLM16, CHK∗18, BVD19], mul-
tivariate data [CCD∗17], or even multi-user applications on wall-
displays [PLE∗19]. Yang et al. presented a method for the visual-
ization of OD data [YDJ∗18]. In this work, the authors offer several
representations of geographic flow maps and conclud that the 3D
illustration should be preferred to the 2D alternative [YDJ∗18].
These visualizations clearly show the advantage of using immer-
sive environments for intuitive user interaction and spatial percep-
tion. The only immersive visualization directly designed for func-
tional brain connectivity data is a web-based VR application, Neu-
roCave, proposed in [KZC∗17]. Yet, the application does not illus-
trate directed network edges, and additional dimensions like time
and frequency cannot be integrated. Therefore, we propose a new
approach of immersive visualization of brain connectivity data by
transferring well researched OD visualizations to an immersive 3D
environment applying it to functional brain connectivity data.

3. Concept

Any visualization tool has to be realized with regard to the kind
of data that have to be illustrated and essentially depends on the
questions that have to be answered. The goal of the application pre-
sented here is to visualize high-dimensional brain networks derived
from EEG data.

3.1. EEG-based brain connectivity

Raw Data. EEG data from an experiment investigating visual
evoked potentials has been used [PLL∗15]. We segmented this data
into 40 repetitions lasting from 500 ms before and 1100 ms after the

Figure 2: Extract of the adjacency matrix heatmap panel. Subfig-
ure (a) is restricted to one time point and one frequency; in (b) the
time is fixed, the frequency varies. The time-frequency map in (c)
shows the color-coded PDC values between the currently selected
directed channel combination O1→ O2.

stimulus onset and were sampled down to 125 Hz in time; for the
recording we used the classical 10/20 system for the arrangement
of EEG electrodes (for details see [Pes16]).

Derived data (brain networks). This raw data is an example
where multiple dimensions necessarily have to be included into net-
work analysis [BTS∗08]: connectivity may have a spatial focus and
direction on the scalp; experimental stimulus requires for a time-
variant network analysis; patterns have to be analyzed depending
on frequency bands.
We apply the following strategy for the quantification of multi-
dimensional brain connectivity data. First, data is approximated
by the generalized multivariate Kalman Filter algorithm [MLA∗10]
which has proven to be an appropriate choice in the case of multi
trial EEG data [GSVD15]. Based on the derived model coefficients,
we quantify functional relationships within the networks by means
of partial directed coherence (PDC), a multivariate, frequency-
domain measure of directed information flow between multivari-
ate time series [BS01]. The result per subject is a 4D PDC tensor
with the modalities node× node−1× frequency bins× time steps
(in this case: 28×27×100×201). As an example, a conventional
visualization such a tensor is shown in Fig. 2(b): every sub-block
represents the color-coded, frequency-dependend, time variant con-
nectivity between the nodes of the network.

3.2. Visualization of brain connectivity in VR

A heatmap panel as shown in Fig. 3 (lower row) is yet not sufficient
to intuitively illustrate the complete 4D tensor. In particular, the
spatial arrangement across the scalp is neglected. The combination
of time, frequency and localization provides important information
depending on the physiological paradigm that is analyzed. For that
reason, we propose the simultaneous combination of different vi-
sualization techniques to jointly cover all modalities of the tensor:
the conventional heatmap panel without spatial information; a full
time extended connectivity graph (FTXC) that covers the whole
time interval and preserves the anatomical arrangement; and the
time-selective connectivity (TSC) illustration, providing a detailed
spatially arranged view of the network at a certain time point. The
view on all panels are synchronized for user interactions.

Heatmap panel. As depicted in Fig. 2, three additional represen-
tations complement the TSC and FTXC visualizations: one adja-
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Figure 3: Virtual visual analysis lab. This is the view provided to
user in VR.

cency matrix for the current time and frequency, one adjacency ma-
trix comprising all frequencies for the complete time interval and
one time-frequency map of a pre-defined directed channel combi-
nation. The purpose of this visualization is to get a first impression
of the complete network which helps to exploratively find relevant
time intervals or frequency bands that should be explored in the
detailed views of 4(a) and (b).

VR main view: Full time extended connectivity graph. The
FTXC (Fig. 4(b)) is the main graph of the visualization. It utilizes
the enhanced 3D perception provided by VR environments by cre-
ating a novel visualization of the brain connectivity data across the
whole time interval. Traditional visualizations of these networks fo-
cus on visualizing a fixed time point and therefore cannot represent
the temporal evolution of brain connectivity. In this graph, source
and sink of the OD data are separated as shown in Fig. 1. A simpli-
fied head is visualized as a disk with a triangle on top indicating the
nose position, the hemispheres of the head are colored differently
(green for left and red for right) to simplify interpretation of the
graph from different viewing angles. Tubes connect the origin and
destination electrodes for a selected frequency band. They are col-
ored corresponding to their PDC value over time. Thus, the FTXC
graph offers an insight into the temporal evolution of brain connec-
tivity patterns.
Origin and destination electrodes can be selected to apply edge
based filtering to the visualized graph. Furthermore, a time pick
layer (TPL) between the origin and destination head allows the se-
lection of a specific time step by mapping the space between the
head disks to time.

VR main view: Time-selective connectivity. In Fig. 4(a), the
TPL is transferred into a node link diagram with the PDC values
that are mapped to edge colors. While FTXC shows the complete
temporal evolution of the network, moving the TPL creates and an-
imation of the temporal network evolution in the TSC. TSC and
FTXC view have the purpose to supply the user with a means of

Figure 4: VR main view with selected EEG electrode. In (a), the
connections are displayed in form of a 2D head. It shows the net-
work at the time point which is chosen by time pick layer in (b).

an intuitive exploration and analysis of brain connectivity. This is
mainly due to the anatomical arrangement of EEG electrodes as
well as to the condensation of networks to the limitation of the view
on certain time and frequency points. In addition to these visualiza-
tions, a 2D heatmap panel representation was designed, showing
the complete network for all electrodes, time points and frequen-
cies at once.

3.3. User Interaction

The interaction with the visualization is performed through direct
interactions with the 3D scene by grabbing and pointing techniques
and is accompanied by a 2D GUI that allows for fine-tuning of
visualization settings. The user interaction is designed to motivate
exploration of the brain connectivity data. The virtual scene shown
in Fig. 3 is sized the way that the user is enabled to physically walk
some steps to view it from different angles.

Grabbing and pointing. The TPL has to be selected by the user
in order to move it to a specific time step. Since the user has to
reach the time pick layer to grab it, it encourages to move into the
3D scene and to view the graph from different perspectives. Elec-
trodes can be selected to apply a spatial filter based on the selected
origin and destination electrodes. This is shown in Fig. 3(a) and
4: while in Fig. 3(a) all network edges are displayed, Fig. 4 exclu-
sively shows the connection from the chosen source electrode (in
this example electrode FT8). In contrast to the time pick layer, the
electrodes are small. Furthermore the origin and destination elec-
trodes are far away. Therefore, a pointing interaction with a ray
from the controller is offered to the user in order to prevent fatigue
by switching positions for selecting different origin and destination
electrodes. In the heatmap panel it is possible to point to a certain
directed channel combination within the adjacency matrix. A de-
tailed time frequency view of the PDC values is then shown as a
third heatmap. An example is given in Fig. 2, where (c) shows the
connection from electrode O1 to Oz. All time points are included
(x axis), as well as the whole frequency range (y axis).

2D GUI menu. In addition to the interaction in the VR scene, a
2D GUI is offered to the user. Here, one of the most important op-
tions is the choice of a frequency of interest which influences nearly
all visualization of the network like the TSC and FTXC graphs.
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Furthermore, it is possible to adjust a threshold or percentile of all
PDC values for the connections that are drawn. The selected fre-
quency is displayed in the heatmap panel and can be adjusted to-
gether with the percentile for filtering through a 2D GUI. In Fig.
3(b) for example, the frequency is set to 10 Hz and only connec-
tions higher than 90 % of all PDC values are illustrated.

4. Implementation

In this paragraph, we introduce the basic ideas of our proposed
implementation. The prototype has been implemented in C++ and
OpenGL.

Data management. During the import of data, a sorted 1D ar-
ray of PDC values covering all frequencies and time steps is kept
for the determination of the percentile threshold. This percentile is
adjustable in the application, and therefore it needs to be accessed
every time the percentile rank is changed. To quickly apply edge-
based filtering in the rendering process, a 2D array is created dur-
ing the import: it keeps the maximum value of every edge at each
frequency and can be directly iterated to filter all edges with a max-
imum value less than the percentile threshold.

Graph rendering. The tubes representing the connections be-
tween origin and destination EEG electrodes are rendered as trian-
gle strips. Dependent on the user’s selection of threshold and elec-
trode(s), only a subset of tubes is drawn but the information of the
whole set of tubes is stored on the GPU.
The position of the time line is dynamically adjusted to not occlude
the FTXC graph while being as readable as possible. For this the
cylinder through the source and destination head disks is consid-
ered. Based on the tracked head position of the user the top sil-
houette line of the cylinder barrel is computed and the time line is
aligned with this.
Point and select interaction with the VR controller is implemented
via checking for ray bounding-box intersections between a ray
coming out of the front of the controller and the bounding boxes
of the EEG electrodes [Cha].

5. Evaluation

Evaluation strategy. In a first qualitative user study, the usability
as well as the experience and effectiveness of the application have
been evaluated. The VR application was tested with a HTC Vive
Pro and two HTC Vive Controllers. A group of six participants was
selected: three of them are PhD students in the research field of
clinical neuro-psychology and work on EEG data. The other three
participants are computer scientists; two of them work in the field
of computer graphics, one is a front-end developer with experience
in user interface design [Win19].
After a short introduction, the users had the task to explore the brain
networks derived from the EEG data described in paragraph 3.1.
For that purpose they had to solve a number of tasks and were
instructed to consistently report what they want to achieve, what
they are doing, what they had expected to happen and what actu-
ally happened (thinking-aloud method [BR00]). These tasks cover
three aspects:

• Interaction. Example: “Move the TPL. Observe and describe the
effects it has.”

• Spatial recognition. Example: “Pick a point on an edge of your
choice in the middle of the graph. Follow the edge to determine
its origin and destination.”
• Heatmap panel. Example: “Use the All-Frequencies OD Matrix

and move through time to look for interesting connectivity values
in other frequencies.”

The full list of tasks can be found in the supplementary material S1.
After the test phase, the participants were asked to fill a question-
naire where they could rate the overall experience. This question-
naire also includes the system usability scale (SUS) [BKM08]. For
the SUS, participants have to give feedback to what extent they
agree with ten different statements concerning the usability of the
application on a five-level Likert scale, finally resulting in a score
between 0 and 100. The questionnaire is provided in the supple-
mentary material S2.

Results. Here, we describe an excerpt of basic evaluation re-
sults; the results of the complete questionnaire can be found in
the supplementary material S3. In general, the new visualization
concept received positive feedback. Five out of six participants
agreed or strongly agreed with liking the overall experience, (item:
“I think that I would like to use this system frequently.”). Com-
pared to the detailed view in the heatmap panel, the participants
preferred the anatomically arranged visualizations of the networks
(TSC, FTXC). Nevertheless they also found that the detailed view
in the heatmap panel provides a beneficial complement. Transferred
to the 0-100 score, the average SUS across the group yields 74.6.
According to [Sau11], this value represents a good system usability
considerably above average of other studies.

6. Discussion and Conclusion

In our user study, we included experts from the field of EEG data
analysis as well as computer scientists. The results yield positive
feedback for exploratory data analysis especially for the non
hypothesis-driven use case. Participants liked the overall experi-
ence and experts with background in brain activity analysis could
see themselves using this application in a professional context.
This indicates that a 3D view of anatomically arranged brain offers
a support for the user for a data-driven, intuitive exploration of
temporally varying, multi-dimensional brain networks.
In our future work we will investigate whether the application
may help for the visual analysis and comparison of brain networks
between several subjects, groups or experimental tasks. Another
open question is: to what extent does the VR view help to better
understand network patterns in comparison to a 3D desktop view?
Here, simulated time series with pre-defined network patterns
(ground truth) are helpful to evaluate and quantify the benefit of
the VR approach in a user study.
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