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Abstract. State-of-the-art Probabilistic Model Checking (PMC) offers
multiple engines for the quantitative analysis of Markov Decision Pro-
cesses (MDPs), including rewards modeling cost or utility values. Despite
the huge amount of internally computed information, support for debug-
ging and facilities that enhance the understandability of PMC models
and results are very limited. As a first step to improve on that, we present
the basic principles of PMC-VIS, a tool that supports the exploration
of large MDPs together with the computed PMC results per MDP-state
through interactive visualization. By combining visualization techniques,
such as node-link diagrams and parallel coordinates, with quantitative
analysis capabilities, PMC-VIS supports users in gaining insights into
the probabilistic behavior of MDPs and PMC results and enables dif-
ferent ways to explore the behaviour of schedulers of multiple target
properties. The usefulness of PMC-VIS is demonstrated through three
different application scenarios.

1 Introduction

Probabilistic model checking (PMC) is a well-established technique used in the
field of formal verification to analyze and assess the behavior of probabilistic
systems. Sources of probabilistic behavior include randomized algorithms as well
as stochastic assumptions about the external use of the system (i.e., the system
environment) and error probabilities. PMC combines concepts from probability
theory and model checking to provide quantitative insights into the reliability
and performance of such systems on various types of stochastic models. It is
applicable at all stages of the life cycle of a system (i.e., in the design phase, at
runtime, and at inspection time) for the evaluation of system properties, such
as reliability, safety, and various cost and performance metrics.

State-of-the-art probabilistic model checkers, such as PRISM [23], Storm [15],
and MRMC [20], have successfully been applied in various application fields,
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including computer science, engineering, robotics, and biology [2,7]. Neverthe-
less, understanding, debugging, and using computed results for a given general
goal often involves a laborious manual process that is only supported by hand-
written and tailored software scripts in combination with general-purpose tools
for handling large datasets. Existing model checkers provide rather limited sup-
port for (re)configuration tasks (i.e., calibrating systems before or at runtime
to complete set objectives under possibly multiple criteria) that involve sys-
tematically exploring and understanding (1) complex system behavior and (2)
metrics returned by PMC processes. While there exist model checkers for PMC
that provide graphical user-interfaces to inspect the model and its results, like
PRISM [23], they do not incorporate advanced visualization techniques.

From the application viewpoint, the missing visual tool support for using
computed PMC results has already been recognized in some domains, such as
DNA sequencing [7] and automated driving [13]. The tools proposed in these
fields provide support for solving concrete problems in their respective domains,
yet they do not transfer to more domain-independent general goals such as
(re)configuration. To the best of our knowledge, no PMC tool fully harnesses
interactive visualization to support the exploration and facilitate the under-
standing of large models and their (functional or non-functional) properties.

In response, we set to create PMC-VIS, a visual tool that explicitly supports
understanding the above-mentioned system behavior (1) and metrics (2) while
remaining independent from a concrete application field. PMC-VIS connects the
PRISM model checker on the backend side with a visualization frontend. Our
focus is on Markov Decision Processes (MDPs) as operational models, in which
the initial states stand for design alternatives (configurations) and the nondeter-
ministic choices stand for possible reconfiguration steps. Metrics in this setting
are of a quantitative nature and include probabilities and expectations of random
variables, standing for either costs or gained rewards. The backend of our tool
PMC-VIS consists of a simple API shell around PRISM that allows for calls to
the model checker at runtime and a database wrapper for efficient data-exchange
to the frontend. The frontend consists of a web-based application that enables
exploration of large MDPs including features for comparing metrics computed
by PMC attached to MDP states, actions and schedulers, while additionally sup-
porting finding suitable configurations in families of MDPs and reconfiguration
in adaptive systems modeled as MDPs. The current version of PMC-VIS, usage
scenarios, and performance experiments are available at imld.de/pmc-vis.

2 Background and Related Work

Markov Decision Processes (MDP) are formal, stochastic models used to describe
systems that exhibit both controllable and uncontrollable behaviour [3]. MDPs
are typically represented as directed graphs with states as vertices and actions
(also referred to as transitions) as edges. Edges can additionally express uncer-
tainty, or in other words, the same action may lead to different states according
to a probability distribution. We will use the term PMC results to refer to the

https://imld.de/pmc-vis
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output of the PMC, including probabilities of temporal events and expectations
of random variables. Apart from the sole purpose of evaluation by means of a
quantitative analysis, the computed PMC results can be used to decide on dif-
ferent design alternatives, determine appropriate values for system parameters
(i.e., parameter synthesis for configuration) and to synthesize suitable adapta-
tion policies (i.e., strategy synthesis for reconfiguration in adaptive systems) by
examining schedulers, the functions that resolved the non-determinism during
computation.

Visual Tools for Model Checking. HMMEditor [7] and TraceVis [13] exem-
plify the usage of PMC results for specific application scenarios which do not
transfer to domain-independent (re)configuration tasks. On the other hand, tools
like Palette [19] and Theseus [11] visualize model checking outcomes, but not the
model or its inherent behaviour. Another example of this is MDPVis [25], which
provides insights for debugging through a succinct overview of MDPs of arbitrary
size, yet it does not visualize individual decisions nor the model itself, making it
quite abstract for understanding the model behavior. Some model checking tool-
boxes in adjacent fields, such as mCRL2 [5], CADP [10] and UPPAAL [4] already
contain capabilities to create visual support for understanding their models by
visualizing them in graph form. In the field of MDPs, this also has been partially
addressed for learning scenarios [27] as well as for the understanding of model
checking counterexamples [17], using multiple coordinated views. But all these
tools were evaluated on relatively small graphs, making scaling to large MDPs
remain an open challenge.

Degree-Of-Interest for Large Decision Graphs. Large graphs are typically
handled using aggregation and clustering methods [12], (e.g., ZAME [8] and
ASK-GraphView [1] and HybridVis [24]), or focus+context techniques [6,30].
However, noting that a complete graph overview may not be necessary for deci-
sion graphs (as the interest is typically on a few decisions at a time), we make
use of Degree-Of-Interest (DOI) graphs [14] instead. This approach for large
graph exploration shows only an initial set of nodes and delegates to the user
the responsibility of revealing, on-demand, the neighbors of nodes of interest. In
this way, the graph is revealed progressively. This is fitting for MDPs as we can
expand by discreet time steps of the model. However, while visual clutter and
subsequently, cognitive load, start low, they increase as the graph is expanded
in this approach. To overcome this limitation, we take further inspiration from
concepts for iterative graph exploration on sequential views [16,29].

Parallel Coordinates Plots for Multivariate Graphs and Decision-
Making. The surveys on multivariate network visualization [21,26] present vari-
ous approaches fitting to our challenge of joining per-state PMC results to MDPs.
Most prominently, multiple coordinated view setups featuring Parallel Coordi-
nates Plots (PCPs) [18] are used to effectively display and explore the attributes
alongside or within the graph view. A PCP consists of a set of n parallel lines axes
for each of the dimensions or attributes of n-dimensional data. The data points
are then represented as polylines connecting the axes at the values of each data



364 M. Korn et al.

Fig. 1. Screenshot of PMC-VIS, illustrating three panes (a, b, c), each showing a
different part of the MDP. The settings sidebar is visible on (d).

point’s attributes. By organizing the data in such a way, it is possible to detect
patterns and correlations between attribute values. PCPs typically incorporate
interaction techniques such as axes re-ordering, brushing and highlighting. By
brushing on an axis x, the user selects the set of data points where the value for
x is within the range determined by the brushed area. Multiple brushes can be
specified simultaneously on different axes, which is why PCPs are employable
for multi-criteria decision-making (e.g., Parasol [28]). HybridVis [24] also exem-
plifies the usage of a PCP alongside a graph view. Using the before-mentioned
abstraction approaches, this graph view scales, although visually cluttered, to
a few thousand nodes. The PCP encodes the multi-variate nodes of the graph,
which in turn allows coordinated filtering and highlighting in both views.

3 PMC-VIS: Visualising Probabilistic Model Checking

As an interdisciplinary team, bridging the visualization and formal verification
communities, we designed and developed PMC-VIS, a tool that integrates visu-
alization techniques and efficient retrieval methods. A screenshot of PMC-VIS
can be seen in Fig. 1. PMC-VIS consists of two web servers, Backend and Fron-
tend. Our architecture decouples the heavy probabilistic model checking compu-
tations done in the Backend from the visualization and interaction service pro-
vided by the Frontend. The Frontend can request data for states or subgraphs of
interest from Backend, and uses this data to populate interactive visualizations.

Backend: The Backend server manages instances of the model checker
Prism [23], using its publicly available API1. As opposed to retrieving the data
from resulting log files, we extract and store it in a database while it is generated
during the stages of the PMC process. Before model checking, we extract struc-
tural information from the model input: existence of variables and their domains

1 github.com/prismmodelchecker/prism-api.

https://github.com/prismmodelchecker/prism-api
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Fig. 2. Representation of MDPs. Version (a) is a more typical, compact version, with
edges for actions and vertices for states. We propose version (b) for PMC-VIS, with a
more stretched but explicit representation of actions versus outcomes.

(i.e., possible values they can take), labels for the states, parameters for exper-
iments, and reward functions. After model construction, we create two tables,
for (1) reachable states in the model, together with information about variables,
labels and rewards, and (2) reachable actions, along with their labels and pos-
sible outcomes. After model checking a property, the computed PMC results
are extracted for every reachable state of the MDP and stored in the above-
mentioned tables, along with the scheduler actions taken or possibly taken.

Frontend: The Frontend of PMC-VIS is a web-based application that visual-
izes MDPs and their conjunct PMC results through sequential panes. Each pane
has two sub-panes, for a graph view and an attribute view. Every graph view uses
the Degree-Of-Interest (DOI) [14] approach to reveal the MDP on demand, and
every attribute view uses configurable Parallel Coordinates Plots (PCPs) [18] to
navigate through the PMC results related to selections within the graph view.
Both panes and sub-panes are re-sizable, and the content within them adapts
to the available space. For example, Fig. 1a shows a vertical PCP to better use
the height of the sub-pane, whereas the PCPs in Fig. 1b and c are horizontal.
PMC-VIS uses both traditional context menus and direct interactions (e.g.,
shift+click, double click) to support both novices and experienced users.

DOI MDPs: We designed a representation of MDPs, visible in Fig. 2b. For
the states, we use rectangular nodes. For the edges, instead of overloading their
meaning to indicate both actions and probabilistic outcomes (as shown in edge β
of Fig. 2a), we explicitly separate these meanings by introducing handle nodes for
the actions as label-less circles. This allows the user to more easily scan and parse
the edges, since an outgoing edge from a state will always carry the action name
(e.g., α, β, γ), and any outgoing edge from a handle node shows the probability
of reaching the state that it points to. For example, when only glancing over
Fig. 2a one could mistakenly get the impression that there are two outgoing
actions from s1 (as opposed to just β). This effect worsens when, (e.g., for each
state) there are several outgoing actions, each with several probable outcomes. In
reconfiguration tasks, where the user needs to decide between several actions, the
handle nodes also simplify the selection of actions by area (e.g., using rectangle
or lasso selections over the circle nodes instead of edges). The labels of the states
are provided by the Backend as either text or icons. The scheduler choices are
represented as solid edges, with the sub-optimal choices shown as dashed edges.
Our proposed representation suits the implementation of an incremental DOI
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approach well, since the data transfers are always small despite the introduced
components. Expanding states reveals their immediate next actions and states.
This expanding can be done within the same pane, or onto one, or several,
adjacent panes.

PMC Results via PCPs: Alongside each DOI graph, a PCP is shown in
each pane to explore the additional PMC results. The PCPs in our PMC-VIS
tool support axes re-ordering and brushing for selections, hovering to preview
selections, and other miscellaneous options for numerical, boolean and nominal
data. The data that is shown on the PCP of a pane is linked to the selection
of nodes on its respective graph view, meaning that states (blue) and actions
(orange) can be loaded onto the PCP for filtering based on the shown PMC
results, which in turn can refine the selection made on the graph view through
e.g., axes brushing. The PCPs can be seen at the bottom of the panes visible
in Fig. 1a–c. Additionally, details for each state on the DOI graph can be shown
on-demand via tooltips.

Settings: PMC-VIS has a sidebar on the right with several options to modify
the shown attributes of the PMC results, as well as several graph layout options
(e.g., force-directed, hierarchical) that can be applied to each pane individually.
Understanding the part of the MDP shown in each pane may be easier using
different graph layout options for particular cases, and this flexibility in con-
figuration supports varying user preferences within each individual pane. The
settings sidebar is visible in Fig. 1d.

Multi-pane Possibilities: Our multi-pane approach allows the users to expand
as much as desired and to create structural “check-points” by expanding a
selection of states from the MDP onto new panes. Doing so creates multiple
work spaces within the same MDP, enhancing the scalability of the DOI app-
roach by turning the model exploration into a task that can be distributed and
completed asynchronously. Furthermore, a pane can be cloned onto a neighbor
pane, for comparison and to save previous states. This approach also supports
backtracking to previous states and work spaces, to re-evaluate decisions and
explore branching paths of the MDP. Lastly, the content of any pane can be
exported/imported, allowing users to completely off-load their progress from a
browser tab and start directly from any state or state selection that they had
reached before.

Implementation: The Backend uses dropwizard2 to establish a RESTful web-
server that wraps Prism and manages an SQL-lite database. The Frontend
of PMC-VIS uses the Cytoscape.js3 library (v3.25.0 [9]) for the graph views,
enhanced through several of its add-ons (e.g., for graph layouts), alongside the
well-established D3.js4 library (v7.8.4) to construct the PCPs. This selection of
libraries and frameworks ensures efficient loading and rendering times.

2 dropwizard.io.
3 js.cytoscape.org.
4 d3js.org.

https://dropwizard.io/
https://js.cytoscape.org/
https://d3js.org/
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4 Usage Scenarios and Performance

To illustrate the capabilities of PMC-VIS, we provide four example models
and several performance measurements on the accompanying artifact [22] and
website imld.de/pmc-vis. In the following, we exemplify the usage of PMC-VIS
for three individual usage scenarios on the model of a server management system
(SMS). This model, consisting of 93,588 states, describes how a number of tasks
is distributed to a number of servers. The usage scenarios are further illustrated
in the Appendix of this paper.

Scenario 1 (Configuration) deals with the model configuration, in which
the user is interested in finding a good server setup. In order to do this, a selection
over the initial 84 states must be made. Using the PCP, the user can refine a
selection that satisfies some criteria of interest. For example, by brushing the axis
for PrMaxHappy near value 1, the user ensures that only states that maximize
the probability of successfully completing all tasks are selected. After similarly
brushing over the lowest values of maximum and minimum energy consumption
(MostEnergy and LeastEnergy), a selection of only 3 states is achieved and
can be expanded on an adjacent pane. Other patterns can be seen in the PCP
that may inform different selections, for which the user can simply go back to
the original pane to change the selection.

Scenario 2 (Exploration) explains how through the exploration of the
MDP in different panes, it is possible for the user to distinguish 3 phases the
model goes through, which helps construct a visual understanding of the model
behavior while using PMC-VIS: (1) generating tasks, (2) re-configuring, and
(3) assigning work. These phases repeat until some termination criteria is reached
(e.g., a fixed number of phases have been completed). The split between these
different phases also highlights the value of using different panes to make sure
that no partial work is lost, which in systems with a single view is often not
possible.

Lastly, Scenario 3 (Strategic Exploration) describes the additional
means by which the users of PMC-VIS can construct strategies while navi-
gating the MDP, informed by the accompanying PMC results. These strategies
are essentially a list of choices that must be made in order to find certain paths in
the MDP, that fulfill the goals of the SMS. Users can discover strategies by com-
paring per-node tooltips, PCPs in different panes (for both states and actions
within the MDP), and MDPs with different highlighted schedulers. Schedulers,
and particularly, the comparison of multiple scheduler options, helps the user
understand how non-determinism is solved for maximum and minimum PMC
results. Thus, the flexible exploration and comparison facilities of PMC-VIS
aid in making sense of schedulers over multiple properties without the need to
trigger new model checking computations. Ultimately, the creation of a strat-
egy may span many panes, and disconnected, asynchronous work, which is why
PMC-VIS also provides a feature to export a collection of marked nodes, which
can be loaded onto a pane to explore gaps until a complete strategy has been
developed.

https://imld.de/pmc-vis
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Performance Experiment: Our goal was to provide both fast build time and
smooth interaction with the MDP regardless of its total size. Thus, we mea-
sured the build and response times of multiple models of similar structure but
exponentially increasing size (measured in number of states of the MDP), all
solved for the same properties. With respect to the model computation times,
our experiment shows that the overhead introduced by the creation and initial
insertion into the database, compared to only executing the PMC procedures,
is mainly bound to the database writing speed, where we perform around 40–50
operations per millisecond. However, all operations scale similarly with respect
to model size, meaning we can compute PMC results normally with Prism.
Likewise, with regards to the model exploration, the Frontend performance is
influenced by the response times of the Backend, which we kept under a second
for small requests (1 to 5 states) or within a few seconds for large (10 queried
states) requests, even on a model with 107 states. Beyond this, on a laptop with
Intel(R) Core(TM) i7-7500U CPU and 16 GB of RAM, and using a Chromium
114.0.5735.133 browser, a single pane continues to operate smoothly with over
500 nodes. However, we do not foresee users working with large requests often,
nor with that much content on a single pane.

5 Conclusion

We contributed PMC-VIS to support exploration of MDPs and PMC config-
uration and reconfiguration tasks. Our solution incorporates DOI graphs and
PCPs on a multi-pane approach that, making use of efficient model checking
and retrieval methods, supports users in understanding model behaviour and
conjunct PMC results. We discussed how PMC-VIS can be used to answer var-
ious formal verification questions, especially in regard to the (re)configuration
tasks. We foresee that further formal model and verification methods would
benefit from extensions of our approach. Thus, we look forward to further gen-
eralizing PMC-VIS in various directions towards an IDE for automata-based
operational models, model checking of functional and nonfunctional properties
and functionalities for various synthesis questions, including further features for
what-if analysis.

Data-Availability Statement. PMC-VIS, the used models, scenarios and
performance experiment are open source and available on our supplementary
web page at imld.de/pmc-vis and in the accompanying artifact at Zenodo [22].
Further figures of PMC-VIS can be found in the Appendix of this paper.

https://imld.de/pmc-vis
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Appendix

The following illustrations are appended to the paper for the interested reader to
have a deeper look at PMC-VIS and our results. (See Figs. 3, 4, 5, 6, 7 and 8).

Fig. 3. Related to Scenario 1 described in Sect. 4. Axes brushing on the parallel coor-
dinates plot. The numbers (1) through (4) represent the order of the brushing steps to
reach a selection of 3 states out of the initial 84.

https://cpec.science
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Fig. 4. Related to Scenario 2 described in Sect. 4. Three phases of our model shown
as patterns in the graph views: (a) Generating tasks, (b) re-configuring servers, (c)
assigning work to each server.

Fig. 5. Related to Scenario 3 described in Sect. 4. Different edge highlights depending
on the selected scheduler. (a): PrMax Happy was selected. (b): Least Energy was
selected.



The PMC-VIS Tool 371

Fig. 6. Related to Scenario 3 described in Sect. 4. Shift+click on a state (with blue
border) shows a tooltip, detailing all properties selected in the settings sidebar. (Color
figure online)

Fig. 7. Related to the experiment described in Sect. 4. (a): Times for single model com-
putation. (b): Average response time (gathered over 10,000 responses). These experi-
ments were carried out on a server with Intel(R) Xeon(R) L5630 CPUs with in total 8
physical cores and 189GB of DDR3 RAM.
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