
This is an author and pre-print version. The official publication can be found at https://doi.org/10.1145/3706598.3713518 — Project website: https://imld.de/ar-docs/
©2025 Copyright held by the authors. This work is licensed under a Creative Commons Attribution 4.0 International License

Documents in Your Hands: Exploring Interaction Techniques for
Spatial Arrangement of Augmented Reality Documents

Weizhou Luo
weizhou.luo@tu-dresden.de

Interactive Media Lab Dresden,
TUD Dresden University of Technology

Dresden, Germany

Mats Ole Ellenberg∗
mats_ole.ellenberg@tu-dresden.de
Interactive Media Lab Dresden,

TUD Dresden University of Technology
Dresden, Germany

Marc Satkowski
msatkowski@acm.org

Interactive Media Lab Dresden,
TUD Dresden University of Technology

Dresden, Germany

Raimund Dachselt∗†
dachselt@acm.org

Interactive Media Lab Dresden,
TUD Dresden University of Technology

Dresden, Germany

Figure 1: (A) We conducted a study where participants proposed interaction techniques for arranging AR documents. Based on
the findings, we introduce a design space, derive design implications, and illustrate use cases with a rapid prototyping system.
These use cases include (B) affinity diagramming (classifying and clustering sticky notes), (C) document management (fanning
out documents and enlarging one), and (D) graphic design iteration (brushing a row layout to compare variants).

Abstract
Augmented Reality (AR) promises to enhance daily office activities
involving numerous textual documents, slides, and spreadsheets by
expanding workspaces and enabling more direct interaction. How-
ever, there is a lack of systematic understanding of how knowledge
workers can manage multiple documents and organize, explore,
and compare them in AR environments. Therefore, we conducted a
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user-centered design study (N = 21) using predefined spatial docu-
ment layouts in AR to elicit interaction techniques, resulting in 790
observation notes. Thematic analysis identified various interaction
methods for aggregating, distributing, transforming, inspecting,
and navigating document collections. Based on these findings, we
propose a design space and distill design implications for AR docu-
ment arrangement systems, such as enabling body-anchored stor-
age, facilitating layout spreading and compressing, and designing
interactions for layout transformation. To demonstrate their usage,
we developed a rapid prototyping system and exemplify three envi-
sioned scenarios. With this, we aim to inspire the design of future
immersive offices.

CCS Concepts
• Human-centered computing → Mixed / augmented reality;
Empirical studies in interaction design.
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1 Introduction
Mixed or Augmented Reality Head-Mounted Displays (MR or AR
HMDs) are extending our office workspace. In the future, docu-
ments with texts and images, along with application windows, will
no longer be limited to rectangular monitors. Instead, they can be
freely placed anywhere in the environment as holograms, fully
leveraging the infinite display space. Consequently, various types
of virtual documents have been investigated in immersive environ-
ments, such as office papers [72, 89], brainstorming notes [21, 93],
design sketches [47, 116], and data diagrams [62, 76, 77]. As im-
mersive environments become more accessible and the prevalence
of holographic documents grows, there is an increasing demand
for MR applications to support users in organizing and arranging
multiple documents.

We envision better space usage in such MR-enabled offices fa-
cilitated by direct and far-reach interaction. Users can move freely
throughout their offices, strategically placing holographic docu-
ments anywhere and organizing them into various spatial lay-
outs according to their specific goals. While Immersive Space to
Think [75] systems have already demonstrated the potential for
sensemaking in immersive environments, we believe that users can
benefit from interacting with digital documents in a natural and
intuitive way. For example, they can push virtual documents into a
stack on the table, flick their wrist to fan them out, or toss them onto
a physical whiteboard as a grid, leveraging familiar organization
methods from the physical world [53].

However, designing such interactions is inherently challeng-
ing [28, 29, 58]. Organizing virtual documents in 3D space necessi-
tates rethinking interaction techniques for multiple objects, such
as selection and manipulation. These interactions must support
various spatial layouts based on user intentions and layout charac-
teristics, facilitating document placement in MR environments with
complex geometric and semantic contexts. Therefore, exploring
how users would articulate space usage and interact with docu-
ment collections is essential. These insights are vital for guiding
the design of immersive applications that facilitate the organization
of virtual documents.

To address this research need, we conducted a user-centered
design study in a simulated office environment (see Fig. 1A). We de-
signed a "priming & production" study procedure (informed by [90]),
in which 21 participants engaged in 14 different tasks across 22 spa-
tial document layouts, resulting in 790 observation notes. Through
thematic analysis, we discovered various interaction methods to
translate, aggregate, distribute, transform, and navigate document

collections. Furthermore, we identified participants’ general atti-
tudes and rationale based on post-study interviews.

Building on our study results, we propose a design space describ-
ing essential attributes for document organization in immersive
environments. We derive design implications to inform the design
of future MR systems, such as anchoring documents to bodies for
temporary storage, enabling the adjustment of layout compactness,
and designing interaction for layout transformation. To facilitate
practical interaction design, we developed a rapid prototyping sys-
tem, enabling AR interaction mock-ups with keyframe animations.
We also present envisioning scenarios (see Fig. 1B-D) to demon-
strate the applications of our findings. With our work, we aim to
inspire and guide designers by showcasing the potential and rich-
ness of spatial interaction for document organization and setting
the foundation for future immersive offices.

To sum up, our main contributions are:
• Empirical insights of user action patterns, strategies, and
rationales for arranging virtual objects based on a user-
centered design study (N = 21).

• A design space and seven design implications to guide the
creation of future immersive systems handling document
organizational tasks.

• An open-source rapid prototyping system to illustrate three
imaginative scenarios for inspiring future applications.

2 Related Work
Organizing digital content into structured layouts is essential in
Human-Computer Interaction (HCI). This topic encompasses the
appearance of layouts and the methods users use to create and
manage them. To provide a comprehensive overview, we categorize
the related research by device types. This includes flat screen inter-
faces (Sec. 2.1), cross-device environments (Sec. 2.2), and immersive
environments (Sec. 2.3).

2.1 Flat Screens
For 2D desktop interfaces, various techniques have been explored
to organize multiple views [110]. These approaches include spatial
layouts such as piles [84, 104], overlaps [54], and Mosaic [123].
Interaction techniques involving trays [8], bubble [124] metaphors,
and proximity-driven approaches [22], have been also proposed.
For instance, PILING.JS [69] summarized user goals and presented
piling metaphors for organizing data collections (small multiples).
3D desktop interfaces have explored spatial metaphors like gallery
rooms [103], mountain landscapes [3, 102], flows and loops [94],
and information spaces [23, 24]. These can be interacted with by
natural gestures to highlight, scroll, and expand documents [48, 66],
indicating the potential to extend beyond flat screens. However,
these works were designed for confined 2D screens, where users
are inherently restricted and isolated.

Interactive surfaces like display walls and tabletops provide in-
creased space, allowing diverse organization methods. For instance,
Space to Think [4] was proposed to analyze documents on a large dis-
play to externalize cognition. Large hand gestures [27, 57] and phys-
ical navigation (i.e., walking) [5] were suggested to interact with
documents. Moreover, techniques for structuring multiple contents
on tabletops, such as alignment tools [37], grids and guides [35],
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and pen strokes [36], have served as inspiration. Particularly, Rock
& Rails [126] introduced fist ("Rock") and flat-hand ("Rail") gestures
to define and manage document layouts. BumpTop [1] proposed a
realistic interaction style that incorporates the knowledge of how
objects move and change in reality into the interface design, includ-
ing piling, fanning out, and page leafing. Likewise, interactions like
sliding with fingertips, gathering with entire hands, and shoving
with real paper cards have been explored [128].

Considering the larger space, natural interaction, and inclusion of
real-world surroundings, it is promising to further extend document
organization into MR environments. However, as users also manip-
ulate digital objects fundamentally differently than their physical
counterparts [118], AR documents should not simply be treated as
digitized papers. Instead, the exploration of new design possibilities
beyond realism and known affordances is also needed.

2.2 Cross-Device Environments
Multiple devices can be combined into cross-device environments,
creating flexible workspaces for distributing and engaging with
digital content. Comprehensive surveys have summarized the tax-
onomies and practices of these environments [14, 133]. Specifically,
homogeneous devices, such as multiple desktop monitors [73, 133]
or multiple handheld devices [85], can be united. We draw inspi-
ration from interaction techniques for arranging and transferring
digital documents across devices, such as tray tools [136], hand ges-
tures (swiping, flicking, and pick-and-drop [99, 129]), spatial device
gestures like tilting [85], and physical-object-based interactions
like slamming on tables to broadcast [42].

Heterogeneous devices with distributed roles can also be com-
bined. Examples include pairing desktop monitors with wall dis-
plays [50, 83] and handheld devices with tabletops [98, 135] or
with wall displays [61]. Small personal devices often function as
accessible workbenches for temporary storage and manipulation,
while their physical form can also act as spatial pointers on larger
devices. In contrast, larger devices are primarily used for content
placement. For instance, phones can serve as personal proxies to
spread documents on wall displays based on movement [61].

However, despite the tangibility, the physical nature of devices
largely limits the possibilities. In contrast, users can customize AR
documents on demand, adjusting their scale and placing them any-
where in immersive environments, creating designated workspaces.

2.3 Immersive Environments
In immersive environments, holograms are often organized by users
into various spatial layouts, such as planar [62, 109], circular [75, 77],
or environment-based [21, 75]. To support layout design, Ethereal
Planes [30] presents a design space focusing on the placement of
AR content around the user. Likewise, AR content can be directly
attached to the user’s body [43]. However, designing content orga-
nization systems that fully leverage 3D space remains challenging.
Various factors can influence layout preferences, such as content
characteristics (e.g., number and geometry) [62, 77], user tasks,
and workflows [78, 109]. Moreover, since multiple AR documents
can be composed spatially in a variety of ways, supporting their
organization process is more complicated.

Holograms can be integrated into real surroundings [63, 127].
However, designers have to consider factors like visual salience [32]
and spatial and semantic association [26, 31, 71]. Physical surfaces,
such as walls [31], ceilings, and floor [107] can be the anchors for
content placement [92]. Physical objects such as furniture have
been utilized for organizing virtual documents [16, 81] or referring
to associated visualizations [63, 82]. The presence of other per-
sons also influences content placement, such as around [106] and
between people [47]. While the inclusion of real-world elements
expands document placement options, it also increases the com-
plexity of designing systems for content organization. It is crucial
to understand where to organize documents, when to transition
them, and how to manage these transitions.

AR applications can support content arrangement by suggesting
and refining object placement through methods such as surface
detection [87, 92, 121], object auto-clustering [117], or object re-
location [80, 91]. Full automation that minimizes manual effort
has also been explored, like adaptation to the physical environ-
ments [19, 38, 97], user context [34, 60, 80], or original layouts [20].
However, as adaptation results can deviate from actual intentions,
users reported preferring to retain control [80, 117].

Various interaction techniques have been studied for manu-
ally arranging virtual content [9, 15, 115]. Those include freehand
gestures [80], gaze [64], body or proximity [40, 76], and extra de-
vices [101, 111]. For instance, FingerSwitches [96] is a pinch-gesture-
based technique, supporting the transitions of UI between static,
dynamic references, and users themselves. In addition, symbolic
gestures like Plane, Ray, and Point [46] can set shape constraints,
while tools like a handlebar metaphor [113] and 3D grid [7, 111]
can be used for manipulation and alignment. To organize multiple
virtual notes, a set of natural interactions was proposed [68], in-
cluding snapping notes on the clipboard, sweeping them to align,
transferring bulk notes by a sieve, and crumbling the clipboard for
deleting. Moreover, users’ bodies can store content, including on-
body areas (e.g., wrist [80]), around-body space (e.g., waist [55, 76]),
and around foot areas [76]. Retrieval can be facilitated by pull-out
gestures [80], contextual menus [55], and feet [76].

Despite these advancements, prior work primarily focuses on
specific interaction methods and particular use cases. Given the
sophisticated nature of document organization in 3D space, there is
a lack of coherent perspective on how document spatial layouts and
placement in mixed-reality environments should adapt through
interaction methods to suit users’ varying goals and intentions.

3 User-Centered Design Study
Our goal is to understand document organization in immersive en-
vironments and inform the design of future MR systems. We focus
on user interactions with multiple virtual documents for organiza-
tion in AR environments but also consider document exploration
and comparison as the final goals of such organization. To this
end, we conducted a user-centered design study to elicit interac-
tion techniques. We investigated fundamental tasks reflecting core
activities of everyday document arrangement. Data was collected
and analyzed both quantitatively (open-coding) and qualitatively
(thematic analysis). Detailed protocols, raw data, and analyses are
provided as supplemental material.
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Figure 2: Overview of the study environment. (A+B) show the initial state of the study environment for the priming and
production phases, respectively, captured from different angles within the same space. (C) presents layouts created by a
participant during the context priming. (D+E) show different views of the predefined layouts in the AR prototype during the
production phase. (F) shows one of the documents used in the study (Dog image ©Perfect Zero, CC BY 2.0).

3.1 Study Design and Rationale
To investigate document organization activities and generate tech-
niques for arranging virtual documents in AR, we examined the
transformation of document layouts (as "referents"), the techniques
to achieve these transformations (as "symbols"), and the relations
between transformations and tasks. We opted for a user-centered,
open-ended procedure by only providing various starting layouts,
aiming to reach a high saturation and richness of elicited techniques.
This differs from the classic elicitation studies, where referents’ start
and end states are mostly clearly defined.

We created an exhibition scenario where participants were asked
to prepare a presentation with given documents. We leveraged a
set of common document organizational tasks (informed by [69]) to
closely observe how participants would organize paper documents
or AR documents. To counteract legacy biases, we employed prim-
ing and production techniques [90]. Specifically, we applied three
types of priming: context, creativity, and environmental priming.
With context priming (similar to [100]), we used paper documents
to foster an understanding of the document organization scenario
and its requirements. We implemented creativity priming with sci-fi
movies to inspire designs based on new form factors [2]. Finally,
we adopted environmental priming, which involved locating re-
lated objects to counter unfamiliarity and raise awareness of the
environment. During the elicitation with the production method,
participants were instructed to propose as many techniques as
possible with AR HMDs for organizing holographic documents. A

pilot study (N = 3) was conducted to test and refine the procedures,
including improving instructions.

3.2 Study Materials & Apparatus
A simulated office environment was prepared for the study, incor-
porating various working documents, document layouts, and an
AR prototype.

Study Environment. The study environment resembled a typical of-
fice space, measuring 4 m × 5.9 m, with objects commonly found in
an office, including a largemeeting andworking table (1.6m× 1.6m),
a desk with a desktop PC, two whiteboards of different sizes, a ver-
tical interactive surface, a cupboard, and several plants. For context
priming, participants were supplied with additional office materials,
such as sticky notes, pens, and binder clips. During the production
phase, additional objects like a coffee mug and books were placed
on the large table to simulate an active working environment (see
Fig. 2B, D+E). Two experimenters were in the same room adjacent
to the study area to moderate and observe the participants.

Documents and Layouts. Participants were provided with several
documents to organize. Each document described an animal with
three aspects (similar to [81, 125]): name, picture, and three at-
tributes (diet, social, and character). For example, "German Shep-
herd: Carnivore, Domestic, Fierce," as shown in Figure 2F. We pre-
pared 50 paper documents (A5, 21 cm × 14.8 cm, see Fig. 2C) for
the priming phase and 110 virtual documents (24.8 cm × 14 cm, see
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Figure 3: Five categories of predefined layouts used in the
production phase of our study, with the numbers in brackets
indicating the number of layouts used from each category.

Fig. 2D+E) for the production phase. These virtual documents were
predefined in 22 different spatial layouts based on factors such as
the number of documents, dimensionality, order, compactness, and
overlap. We categorized them into piles, loose, orderly, grid, and
spatial layouts (see Fig. 3 and Fig. 2D+E). The documents were fixed
in size and positioned either in mid-air or associated with physical
objects such as whiteboards or books.

AR Prototype. A lightweight AR prototype was developed for ren-
dering virtual documents in the production phase (see Fig. 2D+E),
using the Mixed Reality Toolkit (MRTK)1, Unity 3D2, and C#. The
prototype was deployed on a Microsoft HoloLens 2. A QR code on
the table was used to align the AR scene with the study environ-
ment, allowing the same application to run on different HoloLenses
(for participants, experimenters, and the recording camera). To
minimize the influence of interaction techniques and prompt partic-
ipants to focus on ideation rather than implementation, the virtual
documents presented were view-only, without manipulation capa-
bilities.

3.3 Participants
We recruited 21 participants (7 female, 13 male, 1 non-binary) via
word-of-mouth and email. The average age was 26 years (𝑀 =

26.19, 𝑆𝐷 = 4.42). Participants were current or former students
from the local university, majoring in various disciplines like ar-
chitecture, medicine, psychology, software engineering, informa-
tion science, and computer science. On a five-point scale, partici-
pants reported organizing various types of content relatively strictly
(𝑀 = 3.76, 𝑆𝐷 = 0.70) on a nearly daily basis (𝑀 = 3.86, 𝑆𝐷 = 1.01).
They did this more frequently for digital (𝑀 = 3.67, 𝑆𝐷 = 0.66) than
for physical (𝑀 = 2.81, 𝑆𝐷 = 1.08) documents and regularly revise
their arrangements (𝑀 = 2.62, 𝑆𝐷 = 0.74). Most participants had
limited experience with AR (𝑀 = 2.24, 𝑆𝐷 = 1.18) or VR HMDs
(𝑀 = 2.48, 𝑆𝐷 = 1.12) and minimal experience with freehand inter-
action (𝑀 = 1.81, 𝑆𝐷 = 0.93). Participants were compensated with
25€.

3.4 Study Tasks & Procedure
The study was conducted by two experimenters and involved five
steps: (1) Welcome and introduction; (2) Pre-study questionnaire
on demographic information, current organization practice, and
immersive technology literacy (see Sec. 3.3) and consent form;
1https://github.com/Microsoft/MixedRealityToolkit-Unity
2https://unity.com/

Figure 4: Tasks used in the study, with the numbers indi-
cating the execution order. These tasks are categorized into
organizing, exploring, and comparing.

(3) Three priming procedures; (4) Technique production with pre-
made AR document layouts; (5) Post-study interview and conclu-
sion. Each session lasted approximately 130 min (M=128:40 min, -
SD=13:26 min).

Priming. It consisted of three priming procedures. First, context
priming involved participants organizing physical documents for an
exhibition without specific criteria. Initially, they freely organized
25 documents presented as five stacks on a table. After 10 min, 25 ad-
ditional physical documents were distributed in 5 stacks throughout
the study environment, simulating daily situations where users of-
ten have to consider new documents and work iteratively. After an-
other 10 min, participants briefly presented their classifications and
reasoning. During the study, participants were instructed to think
aloud and freely rearrange the environment if they desired. Lastly,
an experimenter asked the participant to recall and demonstrate
the organization process with physical documents based on a set of
organizational tasks (see Fig. 4 and supplementary material). This
phase lasted approximately 41 min (M=40:59 min, SD=3:52 min).

Next, creativity priming was executed. Participants were seated
to reduce fatigue and watched a 4:23 min video featuring scenes
from sci-fi films (e.g., Avatar and Iron Man) depicting characters
interacting with holograms. Lastly, environmental priming was
conducted to familiarize participants with the study environment
and examine the use of physical objects for organization. An ex-
perimenter orally listed various objects, and participants located
them in the room. The entire priming phase lasted around 50 min
(M=49:36 min, SD=3:50 min).

Production. The production phase involving AR HMDs consisted
of two stages. Participants first explored and examined the AR
environment with 110 holographic documents arranged in prede-
fined layouts. They were then asked to propose techniques for a
set of organizational tasks (see Fig. 4) without considering tech-
nical limitations. Participants could verbalize, act out, or sketch
(on paper) their proposed techniques. To fully explore different
arranging techniques and achieve high saturation and richness of
results, participants were asked to produce as many techniques as
possible for each task. To facilitate ideation and inspire diversity,
participants were encouraged by the experimenter to consider dif-
ferent situations. They were motivated to freely move around in the
study environment while considering how to arrange documents in
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Figure 5: Occurrences of proposed techniques categorized by input modalities across study tasks. Hand gestures, including
both one- and two-handed, were predominant across all tasks. Voice input was mainly used for search tasks. Gaze, body, and
physical-object-based inputs did not show a clear pattern, while WIMP-style interactions were mainly used for previewing.

varied layouts (i.e., referents, see Fig. 3) and with different interac-
tion distances to those layouts (far vs. close) until no further ideas
can be proposed. The phase lasted around 63 min (M=62:28 min, -
SD=9:29 min).

3.5 Data Collection & Analysis
We followed the principles of semi-structured qualitative stud-
ies [11] for data collection and analysis. Details of study documents
and data can also be found in the supplementary material.

Data Collection. An iPhone, an iPad Pro, and a camcorder were
used to video record user behavior, alongside observation notes
taken using a semi-structured protocol. During the production phase,
up to two HoloLenses were used to record participants’ descriptions
of techniques in the AR environment. Finally, a 10-minute semi-
structured interview was conducted to probe participants’ overall
attitudes. The interview covered topics such as general impressions,
media affordance (“What is the difference between working with pa-
per documents vs. holographic documents?” ), opportunities (“What
is the biggest problem of current document organization workflows,
and would MR help?” ), and visions (“Can you imagine a future MR
office, and would you use it?” ). Participants were also asked addi-
tional questions informed by the study notes, regarding arranging
strategies and recurring themes during the study.

Data Analysis. The analysis involved extracting and classifying
the proposed techniques. Observation notes taken by two experi-
menters were digitized. A third author reviewed and partially coded
video recordings to verify and supplement the notes. Three authors
then thoroughly reviewed the notes with the support of videos to
remove repetitions and refine descriptions, resulting in a total of
790 notes. These notes were analyzed using thematic analysis [13],
categorized into two main themes and multiple sub-themes that
evolved during classification (see Sec. 4). All authors discussed the

results and cross-checked them together. The process was iterative
until a consensus was reached. Finally, one author transcribed and
analyzed interview comments via thematic analysis.

4 Results
We present the study results in this section, beginning with an
overview of the descriptive statistics (Sec. 4.1). We then delve into
the observed organization strategies and summarize the patterns
identified (Sec. 4.2). Lastly, we illustrate participants’ attitudes and
rationales as revealed through the interviews (Sec. 4.3).

4.1 Descriptive Statistics Overview
From the collected 790 observations, participants proposed an aver-
age of 37 techniques (𝑀 = 37.62, 𝑆𝐷 = 2.48). We observed a slight,
gradual decrease in the number of proposed techniques for each
task during the production phase, likely due to the saturation of
answers. In the following, we summarize the quantitative aspects
of proposed techniques (see Fig. 5), providing an overview regard-
ing workspace, layout manipulation, and interaction modalities and
styles.

Workspace. Participants preferred placing or anchoring docu-
ments in relation to specific locations in the immersive environ-
ments. These locations included the general environment (3.80%)
like ceiling and floor, specific objects (3.29%) like tables and white-
boards, or participants’ bodies (22.78%). Documents could be placed
on (13.92%), near (12.66%), or far (1.27%) from these anchors. Dur-
ing the tasks, documents were frequently moved between different
anchors or workspaces (15.32%). Interestingly, detour transitions
between workspaces (10.38%) were identified, where participants
often moved documents close to themselves (near or on) before
relocating them to the desired destination.
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Figure 6: Observed workspaces in the study, including (1) body-centric space consisting of on-body space (in blue, the immediate
space around the user) and arm-reach space (in green, within arm’s reach), (2) physical environment and real objects (in purple),
and (3) open space encompassing the remaining surrounding area.

Layout Manipulation. Participants were asked to imagine work-
ing with documents for study tasks like aggregating, merging, and
splitting. However, additional organizing actions were observed for
document groups throughout the study. Those include transform-
ing (11.27%), storing (7.34%), compressing (5.70%), and spreading
(10.25%) a layout and its documents. For instance, compressing a
group (total of 45 instances) was performed to help move a whole
group (14/45), cluster documents (9/45), or merge groups (6/45).
Likewise, spreading a group (total of 81 instances) was performed
to cluster documents (15/81), split a group (11/81), or preview (14/81)
and overview (15/81) within a group.

Interaction Modalities and Styles. Observed interactions can be
categorized into various input modalities (see Fig. 5), including
hands (74.93%), voice (11.90%), gaze (5.32%), body (3.54%), physical
objects (4.18%), or using WIMP elements (11.77%). We differentiate
between one-handed (52.41%) and two-handed (22.53%) interactions.
The latter was more common in complex tasks involving document
groups. Participants frequently combined multiple modalities for
specific interactions (21.91%, 173 instances), either via simultaneous
use or in short succession. For instance, hands were often used in
combination with WIMP elements (63/173), gaze (26/173), or physi-
cal objects (22/173). Participants showed a balanced preference for
interactions within arm’s reach (57.59%) and at a distance (45.57%),
with occasional transitions between near and far (5.44%). We also
identified distinct interaction styles and behaviors, including draw-
ing (9.62%), typing (5.32%), acting (1.52%), and using out-of-context
metaphors (6.96%). Our 21 participants regularly employed various
metaphors, such as beckoning a document closer (12/21) and send-
ing or throwing it away (17/21). Other examples included using a
virtual fishing rod (2/21), a Spiderman gesture to select documents
and pull them closer (P10), and a finger pistol gesture to shoot at a
document for removal (P10).

4.2 Strategies and Patterns of Document
Arrangement

Our thematic analysis revealed twomain themes:workspace and lay-
out arrangement. We first describe AR workspace characterization
(Sec. 4.2.1) and document transition (Sec. 4.2.2). Next, we summarize
group creation (Sec. 4.2.3), layout transformation (Sec. 4.2.4), and

inspection and navigation (Sec. 4.2.5). We also discuss observed
interactions (Sec. 4.2.6).

4.2.1 Workspace Types. Workspace refers to user-defined areas for
engaging with virtual documents, including body-centric, physical-
environment-centric, and open workspaces (see Fig. 6, aligned
with [30, 65, 76]). The last was often used to place arranged docu-
ments after manipulation without anchoring to users or objects.

Body-centric. Participants took themselves as a reference to align
and position digital content, either directly on bodies or within arms
reach. (1) On-body areas represent the direct extensions of the
body, such as hands (P12) or clothing pockets, like shirt pockets
(P15, see Fig. 11A) and pants pockets (3/21). These areas were often
used to store and retrieve documents, acting as “virtual containers”
(P12, P21). Stored documents can be visible like thumbnails (“lapel
pins”, P20) while being accessible from the arm (3/21), the fingertips
(P2), or particularly the non-dominant hand (10/21). This facilitates
translating groups while walking (3/21) or preparing for layout
transformation (see Sec. 4.2.4). (2) Arm-reach space can serve
as a workbench to directly interact with multiple documents in
layouts, such as planar (P10, P11) and circular (3/21). Similar to
on-body areas, documents can follow users dynamically (P14, P18).

Physical-environment-centric. Physical surfaces and objects were
used to arrange documents. (1)Vertical and horizontal surfaces,
such as walls (3/21) or a table (4/21), were often used to present
grouped content. The center of the table assisted in document
overview (3/21) and manipulation (2/21). Other parts of the table
were used for temporarily storing documents for later retrieval,
including the corners (P2) or imaginary drawers above or below its
surface (P9). Moreover, the floor was used to store groups (P12), and
the ceiling was suggested for hanging UI elements like a search bar
(P6). (2) Objects, including tables, were used to locate, orient, and
memorize virtual documents in the environment (4/21). They also
served as proxies for document arrangement, such as translating
documents with a whiteboard or a physical folder (P10, see Fig. 11B),
pointing to documents with the tip of a pen (P4), and aligning
documents with cabinet’s edges (P10).

4.2.2 Workspace Transition. Participants transitioned documents
between workspaces using two main strategies: fetch and assign
and pull and push, for moving documents either close or distant.
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Figure 7: Identified interaction pairs for transiting documents amongworkspaces, including (A+E) grasp and throw, (B+F) attract
and push, (C+G) "come to me" and "go away," (D) Spiderman superpower, and (H) fetch and assign.

Figure 8: Identified interactions for merging or splitting groups: (A) colliding two groups, (B) overlapping one to another,
(C) collecting to a shared place, (D) lasso selecting to split, (E) slicing apart, and (F) tearing apart.

Fetch and Assign. Participants moved documents from arm-reach
space to on-body areas for temporary storage. This involves actions
such as putting documents into a pocket (P19) or snapping them to
the fingertips (6/21) to translate them somewhere else after walking
there. Bi-manual interaction was common (6/21), where one hand
was used to grab and the other to cluster documents (see Fig. 7H).

Pull and Push. This approach involved transitions between arm-
reach space and areas farther away. These include grasping and
throwing (6/21) documents from a distance to the target workspace
(see Fig. 7A+E), using an imaginary vacuum or air blower to attract
and push (5/21) documents across workspaces (see Fig. 7B+F), or
performing social gestures (8/21) such as curling fingers to bring
documents closer (i.e., "come to me") or moving one hand to send
documents away (i.e., "go away") (see Fig. 7C+G). Additionally,
participants caught and retrieved documents by using imaginary
tools like a fishing rod, fishnet, or Spiderman superpowers (P10,
see Fig. 7D).

4.2.3 Group Management. The second theme involves user inter-
actions with document groups and their layouts for organizational
tasks. We first describe how groups were created from individual
documents or from existing groups.

Grouping Documents. Groups were defined based on the spatial
distance between documents, through placing documents close
together in succession (3/21), shoveling them using both hands
and arms (P16), or squashing them between hands (4/21). Resulting
layouts included collages (P16, P19), grids (3/21), piles (3/21), and
stacks (4/21).

Merging Groups. A group can be created by merging existing
groups via (1) colliding (see Fig. 8A) two groups together with
both hands, either slowly (6/21, see Fig. 11G) or fast like clapping
(4/21). Other methods include hugging (P19), drawing a perspective
lasso (P20), or symbolic gestures like crossing two hands (P3, P7).
(2) Overlapping involves grabbing and releasing (12/21), pushing
(P14, P18), or throwing (4/21) one group in another (see Fig. 8B).
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Figure 9: Identified interactions for transforming document layouts, including (A) symbolic drawing, (B+D) frame drawing,
(C) brushing, (E) flicking, and (F) fanning gestures.

Through a (3) temporary mediator, participants first collected
targets first on the left hand (3/21), fingers (P12), or physical objects
(folders, P10) before merging (see Fig. 8C).

Splitting Groups. Splitting groups involves (1) moving docu-
ments one-by-one from one group to another by tapping (11/21),
pointing (3/21), or flicking (4/21). (2) Multi-selection involves se-
lecting and moving documents by tapping (5/21), scooping out (P11,
P18), or lasso selecting (5/21, see Fig. 8D). (3) Slicing involves
drawing separation lines directly in the layout (6/21; see Fig. 8E and
Fig. 11H) or using a scissor gesture (P20-21). (4) Tearing apart
involves using both hands to separate an already spatially ordered
group, like opening a window (5/21; see Fig. 8F).

4.2.4 Layout Transformation. While compressing a layout facil-
itates group manipulation, spreading enhances the visibility and
accessibility of documents within a group. These transformations
can also draw on either the desired layout, the source layout, or a
combination of both – the source layout infers potential interaction
methods, while the target layout determines the extent and scale of
interactions (10/21, e.g., see Fig. 9F "fanning" and Fig. 11F "pulling").

Compressing and Spreading Layouts. Participants often adjusted
the spatial distance between documents. By squashing the borders,
sparse layouts can be (1) compressed into stack (8/21), poker stack
(5/21), or thin stack (P13, P15). This could increase group coherency
and facilitate batch operations like translation, transformation, and
storage. In contrast, compact layouts were often (2) spread out into
grids (8/21) for overview and inspection, enabling precise operations

like multi-selection (7/21), as sparse layouts enhance the visibility
and accessibility of individual documents.

Result-layout-oriented Transformation. Participants frequently
used their hands and arms to spatially "draw" the shape and scale
of the desired layout. (1) Symbolic drawing was used to define
the general shape of the target layout. To create circular layouts,
for instance, P20 moved their finger “like a magic wand” in a circle
(see Fig. 9A) while P10 drew a circle around their waist. (2) Frame
drawing was used to indicate the scale of the target layout. For
instance, moving hands apart horizontally (P15, see Fig. 11C) or
diagonally (P18) determined the dimensions of grids (see Fig. 9B).
Likewise, P18 performed an “accordion gesture” (see Fig. 9D and
Fig. 11D) to create a row where the distance between both hands
defines the width. (3) Brushing was observed to describe the
target layout’s shape and scale with the trace of hand movement.
Examples include drawing a line with a flat hand to define a column
(P16, see Fig. 9C), a semi-circle for circular stripes (P7, see Fig. 11E),
or row after row for a grid (P7). Interestingly, P20 used a needle
and thread metaphor to weave through documents into the desired
layouts.

Source-layout-oriented Transformation. Transformation can also
be informed by the shape of the source layout. For instance, to
achieve a better overview, a vertical stack was pushed down (P9,
P11) or flicked over (P14) to form a horizontal column (see Fig. 9E),
similar to pushing dominoes. Likewise, a stack was thrown onto
the table, mimicking the action of tossing paper in daily life, to
transform into a grid or collage layout (P8, P11).
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Figure 10: Five strategies for layout inspection and navigation, including (A) overview and detail as a grid on the table with a
zoomed-in document, (B) swiping or scrolling a slideshow with focus and context, (C) turning pages to navigate documents,
(D) scrolling a circular strip layout, (E) directional swiping for a rapid inspection.

4.2.5 Layout Inspection and Navigation. To obtain an overview and
extract information, an (1) overview and detail strategy was used
to inspect all documents in a group, such as a zoomable grid (P2, see
Fig. 10A and Fig. 11I), an expandable 3D node-link diagram (P19), or
a sphere layout centering the user (3/21). (2) Slideshow included
layouts like circular stripe (3/21), infinite straight stripe (P15), and
grid (P10). A focus and context approach can be joined to enlarge
one document while others become distorted or overlapped (P14,
see Fig. 10B). Several navigating techniques were combined, such
as auto-play (P10, P20), scrolling by grabbing (4/21, see Fig. 10D), or
swiping (P14). (3) Metaphorically flipping through a book-like
stack (6/21, see Fig. 10C) was observed. (4) Directional swiping
was used to move individual documents aside in succession to
navigate through a stack for tasks like searching or sorting (see
Fig. 10E and Fig. 11J). This created subgroups (3/21), roughly sorted
for a better overview (P9, P14), cleaned up irrelevant documents
for searching (3/21), or performed custom functions based on the
direction (P15).

4.2.6 Reflection and Discussion. We identified various interaction
methods (see Appendix Fig. A1) for workspace transition, document
group management, and layout transformation and exploration.
Most proposed interactions fit reality-based interaction [53], using
actions resembling daily physical practices to interact with digital
content. Many interactions were context-specific, mimicking of-
fice paper handling, while some were more generic, drawing from
everyday experiences, such as storing in pockets or separating via
scissor gestures. Unique metaphors like thread and needle, Spider-
man superpower, and fishing rod were noted for direct and remote
interactions.

The extent of interactions often matched the layout scope, e.g.,
gesture traversal distances corresponded to target layout scopes.
Besides, participants used gestures of varying magnitudes, includ-
ing one-thumb fanning, two-finger pinching, full-hand grasping,
or even entire arms to manage different quantities of documents in

the source layouts. There were also different control levels, from
precise to rough, when interacting with documents. Groups could
be moved individually to specific locations, rapidly swiped in any
direction for splitting, or thrown toward a target for translating.
Similarly, layout transformation can be achieved by brushing exact
layouts or drawing symbols of shapes.

4.3 Participant Comments and Feedback
To reveal participants’ attitudes and rationales, we summarize the
results of the post-study interviews on general impressions, MR
opportunities and trade-offs, and future use cases.

4.3.1 General Impression and User Experience. Participants appre-
ciated the flexibility of AR devices (4/21), with visually appealing
outputs (P8, P10) and diverse data representations (P3, P15). Most
felt positive about using AR for document organization and believed
in its future (18/21). They found it intuitive (P1-2, P8, P14) and easy
to learn (P1, P14) due to direct interaction with content (P1). This
intuitiveness contributes to a “fun working style” (4/21) instead of
“the tediousness of selecting and opening documents one by one [on
desktop]” (P9). Organizing documents in AR felt more controlled
(4/21) as it is convenient to pack and rearrange documents (P7, P21)
or “[pull] documents in front of you in a bigger size” (P17). Partici-
pants noted it as time-saving (7/21) due to ease of arrangement (P5,
P17, P21) and the extensive space for content overview (P1, P17).

However, concerns were raised about hardware limitations like
display resolution (3/21), limited field of view (P11, P16) influencing
the text readability, or eye strain (P6, P10) and device weight (P11,
P16) impacting long-term usability. Some also preferred physical
paper (P11-12) or worried about adding another device to their
workflow (P1).

4.3.2 Current Challenges and Opportunities. Current challenges
in document arrangement included the effort required (P6-7, P11,
P14). Participants noted AR’s suitability for “putting things in or-
der” (P14), structuring and arranging thoughts, and expressing and
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Figure 11: Examples of proposed interactions by participants: (A) P15 pulled out a group from his breast pocket. (B) P10
collected documents using a real folder. (C) P15 transformed a stack into a grid with a spread gesture. (D) P18 created a row
with an accordion gesture. (E) P7 brushed a semi-circular layout. (F) P12 pulled a stack up to form a column. (G) P1 merged
two groups by crashing them together. (H) P12 sliced a column to split it into two parts. (I) P2 enlarged a document from a
grid on the table by zooming in. (J) P11 swiped through a stack to search.

representing them spatially (P9, P20). Interestingly, AR encour-
ages more organization strategies since “magnets and other tools
are effort-taking, same as the desktop, while gesture [interaction] is
more inviting” (P21). The content messiness in AR was relatively
acceptable (P21) and reversible (P14-15), enabling trial-and-error
strategies.

Moreover, limited display space in current desktop systems can
lead to a loss of overview (8/21). In contrast, in AR “the whole en-
vironment is screen space” (P16) for content placement (9/21). This
enables to inspect documents at once (10/21), enhances content
awareness (P2, P21), and improves the visibility of individual docu-
ments (P17).

Participants preferred placing content in “[connection] to the
real-world [environment]” (P15), being “impressed [how] the digital
content [feels as] a part of the room” (P18). They utilized walls and
whiteboards (4/21), horizontal surfaces like tables (2/21), or both
surfaces (3/21). AR can extend existing knowledge and workflow,
as “we act on the physical objects” (P19), enhancing memorizing and
relocating documents (i.e., “as landmarks”, P10). Lastly, essential
documents following the user’s body were recommended (P6).

4.3.3 Tradeoffs of Embodiment. Compared to desktop systems,
AR documents offer a higher degree of embodiment, enhancing
document organization, exploration, and comparison. However,
this embodiment has limitations; distributing documents across
expansive spaces can be overwhelming (P9) or discomforting during
deep reading activities (P8).

Mid-air gestures are intuitive but have tradeoffs, as “some low-
level actions might require a bit more procedures” (P9). For instance,
“for quick notes, AR can be too much overhead” (P9) while “physi-
cal paper allows for rapid and direct changes” (P13). Hand gestures

were also seen as less accurate “considering the nuances of move-
ment” (P16), and participants expressed concerns about gesture re-
call (P13). In contrast, mice and keyboards were perceived as more
accurate, easy to control due to familiarity (P16), and ergonomically
friendly (P8).

4.3.4 Envisioned Use Cases. Participants envisioned AR for presen-
tations (7/21), highlighting its mobility (3/21) and ability to deliver
comprehensive content while reducing preparation barriers (P1), so
“no need to take all [organized] cards from the whiteboard, go to my
neighbor’s office, and then put them all again” (P13). Audiences could
also actively engage with content on demand based on personal
interests (P9), “making it easier to understand each other” (P21).

Participants also suggested co-located (5/21) or remote andmixed
presence (4/21) collaboration scenarios. A shared space allows “ev-
eryone [to] make changes” (P14) with situational awareness, making
it “easier to see everything and what everybody is doing” (P2) and
aiding in shared categorization strategies (P21). The presence of the
real-world environment also allows collaborators to freely “paste
and drop [documents for someone else] anywhere using the environ-
ment” (P5).

4.4 From Study to Design
Our formative study explores interaction techniques and provides
a comprehensive understanding of virtual document organization
activity. Based on these findings, we aim to inform the design of
future MR systems. We focus on 2D documents, prevalent in both
virtual and physical environments and well-suited for information
abstraction use cases (e.g., texts, posters, floor plans). We present
a design space (in Sec. 5) that outlines essential components and
properties of AR systems for content organization. We distill design
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implications (see Sec. 6) using the vocabulary from the design space
to consolidate its knowledge and guide system design. Finally, we
demonstrate practical scenarios (see Sec. 7) that leverage the design
space and design implications.

5 Design Space
Our design space consists of four components: Workspace, Lay-
out, Task, and Interaction (see Fig. 12). To spatially organize AR
documents for a specific task (why), users interact with (how) doc-
uments and their layouts (what) situated in a particular position
(where).

Where - Workspace. It describes a user-defined space where docu-
ments are situated and interacted with. The workspace consists of
physical environments, like tables or the users themselves, as well
as virtual documents. Informed by prior research on egocentric
and exocentric frames of reference [30, 65, 76], we describe the
following dimensions:
Reference/Anchor: Connection to a point or object in an immer-
sive environment.
▶ User of the immersive system.
▶ Object in the situated environment, like a book.
▶ Environment, including architectural elements such as the

ceiling or walls.
▶ Open Space without an anchor.
Proximity: Distance between documents and their reference.
▶ On/In the reference, directly placed or aligned to.
▶ Near to the reference, like in arm’s reach of the user.
▶ Far away from the reference.
Anchor Coupling: How documents behave when their reference
moves.
▶ Persistent, as documents follow when the reference moves.
▶ Temporary, as documents remain static when the reference

moves.
Visibility: Whether documents are visible to the user.

What - Layout. A layout is a visual representation of the spatial
organization of items within a group, which is what users are
working with. Each item can either be a group or a document,
and each group is associated with a specific layout. We clarify its
attributes (see Fig. 13):
Number: The count of documents contained in a layout.
Shape: The geometry of a layout such as stack, column, row, grid,
and fan.
Orientation: Alignment to the anchor (or to the ground if an-
chored to Open Space), like parallel or orthogonal.
Dimension: Distribution of documents in 1D (i.e., line), 2D (i.e.,
plane), or 3D (e.g., cube) space.
Curvature: The shape’s curvature, like flat (0°), semi-circular (180°),
or fully-circular (360°).
Strictness: Alignment among documents according to a specific
pattern, ranging from unordered to ordered.
Compactness: Average distances among the documents, from
sparse to compact.

Why - Task. Users organize documents to achieve specific goals.
We identify the following tasks to indicatewhy users organize. The
first three dimensions are elemental, supporting the achievement

Figure 12: Design space for AR document organization, con-
sisting of four key components: Workspace, Layout, Task,
and Interaction. Arrows indicate the relationships between
these components.

of high-level goals [69], and can also become primary goals in their
own right.
Item Clustering: Organize items and their relations within lay-
outs.
▶ Group/Ungroup to combine/dissolve items as/from a group.
▶ Add/Remove items to/from a group.
▶ Merge/Split to combine two groups into a new one or divide

one into multiple.
Layout Arrangement: Structure the layout of items.
▶ Spread/Compress to increase/reduce the layout’s compactness.
▶ Transform to modify the layout’s attributes.
Workspace Management: Organize items in anMR environment.
▶ Translate to alter the position of items within a workspace.
▶ Transit to move items to another workspace.
Visual Exploration: Extract and compare information from items
visually.
▶ Preview to create a quick overview of content within a group.
▶ Inspect to build an understanding of items and their relations
within a group.

▶ Search to seek an item or other specific information.
▶ Sort to order items within a group according to specific criteria.
Annotation: Add additional information to items, groups, orworkspaces,
such as notes or glyphs.

How - Interaction. Interaction defines how users manipulate docu-
ments into a specific layout for particular tasks.
Modality: Inputmethods, like freehand, gaze, bodymovements/gestures,
or speech.
Style: Relation of the interaction to the real world (i.e., realistic,
metaphoric, or abstract).
Body Involvement: Extent of physical engagement, like only flip-
ping the wrist vs. moving the whole arm.
Motion: Nature of the performed interaction.
▶ Speed of the interaction (i.e., fast to slow).
▶ Precision of the interaction (i.e., high to low).

6 Design Implications
Based on the study results, we distill design implications (I1-7),
applying the vocabulary provided in the design space.
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Figure 13: Layout component of the design space, highlighting the geometric attributes of a spatial layout. This component
includes quantitative attributes such as Number (not shown in the diagram), Orientation, and Curvature, the categorical
attribute Shape, and ordinal attributes including Dimension, Strictness, and Compactness.

I1 - Anchor documents to users’ bodies to aid the arrangement
process. MR HMDs allow users to arrange content in the surround-
ing space, enabling unrestricted movement without confinement
to a fixed position. Anchoring documents on the user’s body pro-
vides convenient quick-access storage. The near-body space can
serve as an effective workbench, offering both visibility and direct
interaction with individual documents, as well as an overview of
document collections.

I2 - Support spreading and compressing for workspace transition
and layout transformation. Spreading and compressing adjust the
compactness of layouts. Compact layouts help reduce visual clutter
and facilitate batch operation, such as transformation, translation,
and workspace transition. In contrast, sparse layouts enhance the
overview and accessibility of the individual documents. As observed
in the user study, alternating between compact and sparse layouts
is essential for the arrangement activities.

I3 - Design hand gesture interaction based on the source layouts to
transform. The shape, orientation, distribution, and compactness
of layouts inform how they can be transformed. These affordances
are rooted in everyday experiences and common understandings
of physics (also see I7). For instance, when spreading a document
stack, one can fan out, push down, pull up, chain out, or throw to
expand on surfaces.

I4 - Use hand gestures and their motion to define the desired layouts.
Hand gestures are intuitive and powerful for expressing spatial
information needed to define layout attributes. The movement of
hands and the paths they trace can indicate the boundaries and
occupied space of desired layouts (i.e., drawing a frame). Gestures
can also specify the exact shape, orientation, distribution, curvature,
and compactness of layouts (i.e., brushing).

I5 - Align body involvement with the number and compactness of
layouts. The number and compactness of document layouts suggest
the expected effort to manipulate them. Therefore, interactions
used to arrange these documents can correspond to this effort
through the level of body involvement. This allows for appropriate
referencing of documents, such as using fingers for single items,
whole hands for groups, or both arms for several groups.

I6 - Prioritize hand-based interaction and supplement with other
modalities as needed. Hand gestures are central to virtual docu-
ment arrangement. However, we also propose integrating additional
modalities to enhance the document organization process. For in-
stance, voice commands can be used to locate known targets or
move documents to predefined locations (like the "put-that-there"
approach [12]), while gaze can serve as an implicit input alternative.

I7 - Leverage interaction rooted in physics and real surroundings.
Adopting realistic interaction styles allows users to apply their
knowledge of physics and real surroundings to the digital realm.
Physical entities like surfaces and objects can serve as tangible prox-
ies or tokens to store or translate documents, supporting arranging
activities. However, we also encourage exploring "out-of-context"
metaphors, such as threads and needles, fishing rods, and Spider-
man superpowers.

7 Design Demonstration
We demonstrate our design space and implications for future MR
document management systems. We first introduce a keyframe-
based rapid prototyping system designed to facilitate the interac-
tion design (Sec. 7.1). We also illustrate three envisioned use cases
(Sec. 7.2). Source code and a step-by-step tutorial are available on
our project website3.

3https://imld.de/AR-Docs
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Figure 14: To cluster sticky notes: (A-C) splitting off the left column from the grid; (D+E) compressing the column into a stack.

7.1 Rapid Prototyping System
Facilitating the design of interaction techniques for immersive envi-
ronments has gained attention [6, 59]. It presents greater challenges
compared to traditional setups due to the vast range of interaction
possibilities and the limited means of experiencing and communi-
cating these options within a design team before a fully functional
system is developed. Animations can be a cost-efficient solution
to allow direct engagement with prototypes, compare design al-
ternatives, and evoke first-hand insights [45]. We thus introduce a
rapid prototyping system that creates interaction mock-ups with
keyframe animations, using a Wizard-of-Oz approach [56, 86] by
externally triggering these animations.

We developed a Unity package with MRTK4. Designers can test
interaction designs with animations on MRTK-compatible devices,
such as HoloLens 2. An animation blueprint (prefab) can be im-
ported by drag-and-drop, containing keyframes for start, end, and
in-between states. Users can define where virtual objects start, tra-
verse, and stop in the Unity scene, and anchor objects to points like
the non-dominant hand. Users can also customize state transitions,
including triggers (e.g., automatic or key-pressing), duration, and
format (e.g., acceleration/interpolation). The resulting animations
can be viewed on MRTK-supported hardware. We integrated a net-
work feature via photon5 to capture interactions from multiple
perspectives (first-/third-person views).

This system allows designers to conceptualize, test, experience,
communicate, and iterate on interaction techniques informed by
our design space. Designers can act out interaction variants and
assess their suitability with HMDs, capturing interaction techniques
as video from various perspectives for discussion. We illustrate
several prototyped interactions with three envisioned scenarios in
the following (also see the video figure).

7.2 Envisioned Use Cases
We illustrate three use cases to demonstrate the richness of our de-
sign space, the practicality of design implications, and how MR can
empower the daily activities of knowledge workers in text analysis,
task management, and design iteration. Guided by our design space
and implications, we highlight why documents are being arranged
(task), where they are arranged (workspace), what kind of layouts
they are in, and how they are being arranged (interaction).

Sensemaking with Affinity Diagramming. Alice, a psychologist,
uses an MR affinity diagramming tool to analyze user study quotes
and communicate findings (see Fig. 14). She stands in front of a

4https://github.com/microsoft/MixedRealityToolkit-Unity
5https://www.photonengine.com/

wall-mounted whiteboard with a table on her right, where forty
participants’ comments are imported as sticky notes in a grid.

To get a general impression of each participant’s comments, Alice
splits off statements with her right arm, sliding the first column
away (I5 ; see Fig. 14A-C). She compresses this column into a stack
with her right hand and collects it on her left hand (I3 & I4 ;
see Fig. 14D+E). She inspects this group in detail via a book-flipping
gesture (I7 ), then places it back on the table, repeating the process
for other participants.

To sort the statements, Alice pulls up a stack like a chain into a
column (I3 , I4 & I7 ), pinches the suitable item, and throws
it (I7 ) to the whiteboard, creating six groups in a grid. Noticing
similarities between the two groups, shemerges them by pointing at
both with open-flat hands (I5 ), forming fists to draw the groups
closer, crashing them together into one group, and throwing it back
to the whiteboard (I7 ), resulting in the final thematic map.

For an alternative overview-focused inspection, Alice can spread
(I2 ) the stack into a slideshow layout using an accordion gesture
(I4 & I7 ), instead of a book-flipping approach. This allows
her to swipe and inspect document groups with the context from
previous and following notes.

Office Task Management. Bob, an administrative secretary, uses
his MR system to sort emails by importance and topic (see Fig. 15).
Emails are displayed as a horizontal stack floating in front of and
following him (I1 ), with newer items positioned closer. Using
directional swiping gestures (I3 & I4 ), he moves emails up,
down, left, and right, resulting in four groups as piles: high-priority,
low-priority, postponing, and decision-required.

Bob assigns sorted documents to physical objects in his office (I7
). High-priority and decision-required groups are placed in two

stacks on his table for immediate attention. The postponing group is
placed inside the folder cabinet, spreading as a column when viewed
(I6 ). The low-priority group is thrown to the cupboard behind
him (I7 ).

Bob then inspects high-priority and decision-required groups in
a slideshow layout. Emails requiring colleagues’ inputs are selected
into a stack and stored in his pocket, becoming invisible. Bob walks
to his colleagues’ office, pulls out the stack, and attaches it to the
door with a thumb-tack gesture (I7 ).

Alternatively, if Bob meets his colleague in the corridor, he can
pull and fan out the stack (I2 ) on his hand (see Fig. 15A+B), fetch
the email with one finger (I5 ), and enlarge it in open space for an
ad-hoc discussion (see Fig. 15C-E).

Graphic Design Iteration. Lizzy, a graphic designer, uses an MR
system to iterate on her paper poster with AI-generated variants
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Figure 15: To manage documents: (A+B) fanning a stack out; (C-E) selecting and enlarging a single document from the stack.

Figure 16: To compare graphic design variations: (A-C) transforming a stack into a row by brushing the resulting layout;
(D) tapping to snap selected files onto the fingertip; (E) drawing to arrange a grid layout around the physical poster.

(see Fig. 16). She imports these posters, arranging them on her desk
as seven piles based on similarities.

To sort them, she fetches a pile and draws a line (I4 ) in the air
from right to left with her open hand (I5 , see Fig. 16A-C). The
items are then spread (I2 ) along this movement as a row in front of
her (I1 ). She drags her favorite designs to the left (I5 ), resulting
in a row ranked by preference. The group is then compressed (I2
) into a stack and placed on the table, with the favorite item on

the top for previewing. Finally, she pulls and pushes selected virtual
posters next to the original paper poster on the wall, enlarging to
the printing size for direct comparison.

Alternatively, Lizzy can compare the best items simultaneously
by grouping them with her finger by tapping them (I5 , see
Fig. 16D) and then drawing a rectangle around the paper poster on
the wall (I4 ). This arranges the group as thumbnails around the
poster (I7 ), allowing for a side-by-side comparison (see Fig. 16E).

8 Discussion of Limitations and Future Work
We discuss current limitations, relate our findings to prior work,
and outline directions for future research.

Document Content and Relation. Our study employed documents
containing multi-dimensional information (i.e., texts and images)
that represent common document types [81, 125]. This generaliza-
tion allows us to focus on how users utilize space based on tasks
and articulate such usages via interaction, independent of specific
content. Consequently, we derive a flexible design space applicable
to various documents. Our findings are particularly relevant for
managing sets of homogeneous documents, a use case increasingly
prevalent in 3D environments. Examples include text documents
(e.g., reports [21], survey responses [74]), graphics (e.g., medical
imaging [10], maps [109]), and data visualizations (e.g., spread-
sheets [39, 52], charts [76]). Our findings can also be applied to
documents with diverse semantic relations. Sequential relations
(like storybooks [25]) can be authored using brushing gestures,
where the start position defines the first page. Hierarchical rela-
tions can be supported with nested layouts or arrangements where
the primary content is anchored by multiple secondary documents

(e.g., [62, 108]). However, further investigation is necessary to un-
derstand how inter-document relations and content uniformity,
particularly considering various shapes, sizes, and content of indi-
vidual documents and their combinations, might affect layout and
interaction.

Workspace Characterization and Partition. Prior work has dis-
cussed body-centric proximal spaces (i.e., personal, peripersonal,
and extrapersonal space) [18, 112] and the proxemic ecology [41]
in multi-device environments, as well as space perception [76],
and reference dynamicity [96] in immersive environments. In the
context of AR document management, while our classifications of
body-centric (on-body and arm-reach) space align with these works,
we further highlight physical-environmental and open spaces. We
also elaborate on potential usage preferences: on-body space for
storage, arm-reach space for manipulation, open space for final
arrangements, and environmental space for both manipulation and
presentation. This aligns with using peripersonal (arm-reach) space
for interaction in immersive environments [30, 76, 131], but con-
trasts with active on-body interactions suggested in multi-device
environments [120]. Future work should place greater emphasis
on real environments for content organization (e.g., landmarks [79,
81] and tangibility [130]) and on supporting transitions between
workspaces (e.g., perspectives [67] and gestures [96]).

Multi-Document Arrangement. Our findings demonstrate the po-
tential of direct interactions, such as drawing layout shapes and
frames, to arrange multiple documents, highlighting the expres-
siveness of hand gestures. While some similar techniques have
been explored with interactive tabletops [1, 36, 128], we extend
this understanding to document arrangement in MR environments,
where increased space enables new strategies, such as directional
swiping gestures. We also observed participants leveraging physical
environments and objects as natural alignment aids, including land-
mark objects, furniture edges, vertical and horizontal surfaces, and
distinct workspaces. This is similar to prior work employing shape
constraints and guides, such as points [46, 126], lines [36, 126], can-
vases [68, 95], and grids [7, 35, 111] in 2D and 3D contexts. We
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encourage further exploration of actively integrating physical sur-
roundings into arrangement tasks. Future work can also examine
how different approaches—such as direct hand drawing as well as
virtual and physical aids, used individually or in combination—can
enhance the organization of multiple documents.

Evaluation of Design and Usability. We adopted a broad user-
centered approach to explore the design space of interaction tech-
niques for MR systems, enabling us to identify characteristics, as-
sociations, and tendencies related to workspace, layout, tasks, and
interactions. However, this methodology may be limited by current
hardware (e.g., restricted field of view), participant backgrounds
(e.g., demographics and technological literacy), and legacy bias
(e.g., priming from paper documents). Additionally, this method-
ology aims to maximize participant creativity, it however does
not necessarily consider implementation details of real-world sys-
tems [70]. Further investigation is needed into interaction detection
and conflicts among interactions [114, 119]. Participants in the in-
terview were mainly concerned about eye strain and hardware
weight for long-term use rather than fatigue from hand gestures.
However, challenges like the "gorilla arm" effect caused by mid-air
interaction [33, 49] can arise. To mitigate this, mid-arm gestures
can be supported [44], constrained [105], or combined with micro-
gestures [17] or with other modalities such as gaze [17, 64] and
foot [76, 122] inputs, as also suggested by our results. While our
rapid-prototyping system provides a starting point for evaluat-
ing interaction techniques, a thorough evaluation would require
narrowing to specific documents and tasks. Future research can
apply our design space to concrete applications, verify design im-
plications within specific contexts, and examine metrics such as
ease-of-performance, learnability, memorability, and reliability of
interaction.

Future MR-enabled Office. Our study focused on participants in
a standing posture, as we anticipate that knowledge workers will
move within future offices. Such mobility could enhance space
utilization, stimulate cognition through physical movement, and
promote a healthier work style. However, considering fatigue asso-
ciated with prolonged use, it is necessary to explore designs that
support seated usage as alternatives and facilitate transitions be-
tween different user postures. Moreover, integrating other existing
devices like desktop computers and their peripheries to leverage
combined strengths is of interest, as demonstrated in research on
complementary [51, 134] and transitional interfaces [88]. Specifi-
cally, further investigation is needed on how documents and layouts
can be consistently transferred across different workspaces or inter-
face types. Finally, extending our findings to multi-user scenarios,
like collaborative brainstorming and sensemaking [81, 132], and de-
signing interactions for shared and individual workspaces [47, 55]
would be a promising direction.

9 Conclusion
We investigated the spatial arrangement of virtual documents in
Augmented Reality. To this end, we conducted a user-centered
design study, eliciting interaction techniques in an office environ-
ment. We systematically analyzed and reported both quantitative
and qualitative results. To support system design, we proposed a

design space, summarized design implications, developed a rapid
prototyping system, and demonstrated three envisioned use cases.
Our goal is to enable designers and developers to create immer-
sive applications that leverage realism and spatiality, empowering
knowledge workers to manage documents and information intu-
itively. Ultimately, we aim to inspire further exploration of spatiality
in immersive environments and inform the design of future mixed-
reality-enabled offices.
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Figure A1: Overview of the major observed interactions in this paper.
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