
0

20

40

60

100 200 400 800 1600 3200

FP
S

Number of Nodes (logarithmic scale)

SVG Canvas WebGL WebGL (no text)

Comparing Rendering Performance of 
Common Web Technologies for Large Graphs 
Tom Horak, Ulrike Kister, Raimund Dachselt

Contact Information

Tom Horak
horakt@acm.org

Raimund Dachselt
dachselt@acm.org

Ulrike Kister
ukister@acm.org

IEEE VIS 2018 

Motivation and Basic Idea

Findings:

How to Compare Web-Visualizations

Strategies for Performance Improvements

�� Web-based visualization interfaces are getting increasingly popular
�� For a high usability, an interface must always run smoothly
�� Especially challenging with high number of displayed elements, e.g., 

in large graph visualizations or big multiple coordinated views apps

�� Comparing SVG, Canvas, and WebGL 
�� Measuring the interface performance as frames per second (FPS) 

during user interactions

Performance loss above 400 nodes:
�� Performance losses started above 400 nodes for all technologies
�� Corresponds to ca. 8,000 graphical elements

SVG and Canvas are on par, WebGL faster:

�� Surprisingly, SVG and Canvas perform almost equally
�� Contradicting general assumption that Canvas is faster than SVG
�� Drop for WebGL (with text) less extreme

WebGL is optimal without text:
�� WebGL performance drop caused by bitmap-based text handling
�� Almost constant FPS without text (50 FPS measured for extreme 

setup of 400,000 nodes; ca. 8 million graphical elements)

Browser Dependency:
�� No notable differences regarding FPS between browsers
�� Exception: Initial lag in Firefox for SVGs caused by applying CSS

Measuring Performance through FPS:
�� FPS can more accurately represent the perceived performance
�� Longer loading time may be acceptable
�� But: slow-acting or laggy interface is not

Using Tree Visualizations as Example:
�� Consist of a large number of nodes and can easily be scaled
�� Here: tree visualization similar to Value Driver Trees

Flexible Level of Detail:
�� Not all elements are of interest to the user
�� Idea: remove elements (e.g., details, labels) when zoomed out
�� Effect: fewer graphical elements; speeds up rendering performance

Combined Approaches:
�� Idea: Combine different technologies, e.g., WebGL for graphic elements 

and a separate Canvas for text elements

�� Challenge: keep both scenes synchronized

Asynchronous Tile Loading:
�� Idea: Asynchronous tile loading similar to map applications
�� Rendering efforts are split up across multiple threads
�� Improved web standards allow for a client-side implementation
�� Implementation: client starts multiple threads (Webworker API) run-

ning headless browser rendering instances (Offscreen Canvas API)
�� Effect: Interface runs constantly at 60 FPS
�� Latency for loading tiles becomes main performance indicator

Nodes and Edges (right):
�� Each node holds an embedded bar chart
�� 1 node = 15 graphical elements
�� 1 edge = line plus box with label

Implementation and Libraries:
�� D3.js for SVG version
�� No library for Canvas version
�� PixiJS for WebGL version

Static and pre-defined Layout Algorithm (top):
�� Rendering used a pre-defined layout algorithm
�� Example with 200 nodes shown above

Text in WebGL (right):
�� Text rendering is complex 

in WebGL
�� Blurry text caused by bit-

map-based rendering

WebGL faster than SVG and Canvas SVG on par with Canvas


