Comparing Rendering Performance of

Common Web Technologies for Large Graphs

Tom Horak, Ulrike Kister, Raimund Dachselt

-

Motivation and Basic Idea

= Web-based visualization interfaces are getting increasingly popular

= For a high usability, an interface must always run smoothly

= Especially challenging with high number of displayed elements, e.g.,
in large graph visualizations or big multiple coordinated views apps

= Comparing SVG, Canvas, and WebGL

= Measuring the interface performance as frames per second (FPS)
during user interactions

Nodes and Edges (right):
= Each node holds an embedded bar chart

I Node 97

= 1 node = 15 graphical elements

= 1 edge = line plus box with label

How to Compare Web-Visualizations

Measuring Performance through FPS:

= FPS can more accurately represent the perceived performance

= Longer loading time may be acceptable

= But: slow-acting or laggy interface is not

Using Tree Visualizations as Example:
= Consist of a large number of nodes and can easily be scaled
= Here: tree visualization similar to Value Driver Trees

B I - I e &

Elmx

b F

[B I e e

| ==y =

Static and pre-defined Layout Algorithm (top):
= Rendering used a pre-defined layout algorithm
= Example with 200 nodes shown above

I Node 164 \

Implementation and Libraries:
= D3.js for SVG version

I Node 194

Text in WebGL (right):

= Text rendering is complex
in WebGL

Node 360 I Node 189
2048
/

= Blurry text caused by bit-

Node 224

map-based rendering

INode266

Performance loss above 400 nodes:
= Performance losses started above 400 nodes for all technologies
= Corresponds to ca. 8,000 graphical elements

SVG and Canvas are on par, WebGL faster:

= Surprisingly, SVG and Canvas perform almost equally

= Contradicting general assumption that Canvas is faster than SVG
= Drop for WebGL (with text) less extreme

WebGL is optimal without text:

= No library for Canvas version
= Pixi]S for WebGL version I i I. i
Findings: » WebGL faster than SVG and Canvas » SVG on par with Canvas
60 o N N
40
20
0 0
100 200 400 300 1600 3200
Number of Nodes (logarithmic scale)
@ S\/G ==@== CaNnvas WebGL WebGL (no text)
Browser Dependency:

= No notable differences regarding FPS between browsers
= Exception: Initial lag in Firefox for SVGs caused by applying CSS

Strategies for Performance Improvements

Flexible Level of Detail:

= Not all elements are of interest to the user

= |dea: remove elements (e.g., details, labels) when zoomed out

= Effect. fewer graphical elements; speeds up rendering performance

Combined Approaches:

= /dea: Combine different technologies, e.g., WebGL for graphic elements
and a separate Canvas for text elements

= Challenge: keep both scenes synchronized

& Ml

TECHNISCHE
UNIVERSITAT
DRESDEN

INTERACTIVE MEDIA LAB
DRESDEN

= WebGL performance drop caused by bitmap-based text handling

= Almost constant FPS without text (50 FPS measured for extreme
setup of 400,000 nodes; ca. 8 million graphical elements)

Asynchronous Tile Loading:

= [dea: Asynchronous tile loading similar to map applications

= Rendering efforts are split up across multiple threads

= Improved web standards allow for a client-side implementation

= Implementation: client starts multiple threads (Webworker API) run-
ning headless browser rendering instances (Offscreen Canvas API)

= Effect. Interface runs constantly at 60 FPS
Latency for loading tiles becomes main performance indicator

Contact Information

H

oce
oo 9 e® IEEE VIS 2018
°

°3

Raimund Dachselt
dachselt@acm.org

Ulrike Kister
ukister@acm.org

Tom Horak
horakt@acm.org

