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Abstract—In the case of liver tumor resections, Minimally
Invasive Surgery (MIS) poses several benefits over open surgery.
However, MIS makes navigating the surgical scene considerably
more challenging, which hampers the realization of its full
potential. Many Image Guidance Navigation Systems (IGS) have
been proposed to overcome these challenges. The majority of
these depend on optical tracking systems, whose additional setup
overhead is a barrier to clinical translation. In this paper we put
forward an IGS prototype which eliminates the need for optical
tracking, and additionally incorporates a user-oriented camera
calibration method which is more reliable and faster than typical
checkerboard methods. We lastly make publicly available the core
system modules for 3D reconstruction and rigid registration.

Index Terms—Augmented reality, Computer assisted naviga-
tion, Computer assisted surgery, Image guided surgery, Laparo-
scopic liver resection, Machine vision, Robotic liver surgery,
Robot Operating System

I. INTRODUCTION

In recent years, liver tumor resections have moved in-
creasingly in the direction of being performed through small
incisions with long narrow instruments. This is an instance
of Minimally Invasive Surgery (MIS), known as laparoscopic
liver resection (LLR). The shift is owed to the benefits
MIS poses over open surgery, such as decreased morbidity
and improved cost-effectiveness [1]. Despite promising clear
advantages, a number of factors make LLR more difficult to
perform by complicating the navigation of the surgical scene,
consequently hindering the realization of its full potential.
Among these are the loss of the ability to palpate the liver for
tumors, a requirement for skilled hand-eye coordination, and
the lack of depth perception [2]. To mitigate these issues and
better facilitate LLR, a number of Image Guidance Navigation
Systems (IGS) have been developed. These aim to assist the
surgeon by enabling the intraoperative visualization of relevant
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anatomical structures such as vasculature and tumors. IGS
approaches may be categorized by the input data they are
based on: video, ultrasound, Computed Tomography (CT), and
Magnetic Resonance Imaging [2].

In this work we present a video-based IGS that delivers
improved usability from the surgeon’s perspective and is
collaboratively built using the Robot Operating System (ROS)
framework. Of the V-IGS systems put forward in recent work,
many rely on external optical tracking to obtain the pose of the
laparoscope camera [3]–[5]. This often involves the attachment
of trackable markers to the laparoscope and carrying out a
hand-eye calibration to obtain the spatial relationship between
the marker and the laparoscope cameras. In tandem with
this, additional optically tracked devices are often used in
the process of registration, either to manually intraoperatively
register the preoperative CT liver model in the first instance
[6], or to collect intraoperative liver surface points with which
to then register the preoperative model [7]. The additional
setup time and equipment which these demand is a barrier
to use in the operating room.

Our pipeline, whose workflow is detailed below, overcomes
the requirement for an optical tracking system by using simul-
taneous localization and mapping (SLAM) to track the pose of
the laparoscope camera, together with a fully software-based
registration method. An additional advantage of our approach
is that a flexible endoscope may be used, allowing the method
to transfer to other scenarios. A second stand-out aspect of our
pipeline is the incorporation of a camera calibration method
that is faster and more reliable than typical methods, which
features a 3D calibration field and an application that provides
user-friendly guidance. The innovations within the IGS we put
forward bring us closer the goal of truly translating such a
system to the operation room. Alongside this publication, we
make available two of the core modules of the system: Point
Cloud Fusion and Semi-Automatic Registration (see footnote
of first page).



Workflow Description

Prior to the operation, a CT scan of the liver is obtained
and segmented to identify structures of interest such as liver,
vasculature, and tumors. These data are used to create a preop-
erative 3D model. Due to the instability of laparoscope camera
parameters [8], the first step in the operating room before
surgery is an accuracy check with the calibration module.
If the system error is above a threshold of acceptability, the
laparoscope camera must be re-calibrated.

At this point, the surgeon may build the 3D reconstruction
of the liver by surveying the liver surface with the laparoscope.
Progressively, the intraoperative surface of the liver is recon-
structed. Once this process is complete, the semi-automatic
registration tool can be used to identify common areas on the
preoperative and intraoperative models. Using these regions,
the registration method will produce a rough alignment of
the two models, which may then be refined by the non-rigid
registration module.

Throughout, the process is conducted and visualized with
the assistance of the available User Interface (UI) control and
visualization tools.

II. SYSTEM DESIGN

In this section, we provide detail regarding the modules in
the Pipeline outlined in Fig. 1.

A. Camera Calibration

A necessary prerequisite to using a camera system for
3D measurements is calibration, where the mathematical pa-
rameters describing the camera are determined prior to the
operation. Laparoscope design does not prioritize stability,
which affects how quickly accuracy declines over time and
how often calibration must be repeated.

Our choice of method considers the medical environment,
where calibration must be performed by medical personnel
in challenging conditions and with limited time. The selected
method is therefore one that is simple to use, fast, and
requires no in-depth understanding of camera calibration. This
is achieved by real-time detection of a 3D calibration field
and feedback to the user on the optimal capture of necessary
images. The information is presented as an overlay of the
laparoscope image, illustrated in Fig. 2. A background process
continuously checks if the requirements are met for the image
to be further used in the accuracy check or calibration. A more
detailed description of the method can be found in [8].

Within 10 to 20 seconds the accuracy check determines if
the current camera parameters are still valid or need to be
updated. This check requires images of the calibration field
to be captured at a predefined distance. Using the known
coordinates of the calibration field, an accuracy value is calcu-
lated. By comparison to a fixed threshold, a recommendation
is displayed to the user if re-calibration is necessary.

For the calibration procedure, images are captured from
multiple previously defined camera positions to which the user
is guided one by one. With these, the calibration is calculated
in the background. Using the new parameters, the result of
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Fig. 1. Pipeline overview. The preoperative liver model is fused into the
intraoperative video stream. For this, a 3D point cloud is reconstructed from
the intraoperative video stream (intraoperative model). Then, the preoperative
model is aligned with this intraoperative model and rendered from the current
camera perspective before being overlayed with the video stream.

a new accuracy check is compared to the pre-calibration
accuracy. If the accuracy is acceptable and has improved, a
recommendation to save the parameters is given.

B. SLAM

In order to obtain poses for the camera, our system employs
the popular SLAM module ORB-SLAM2 [9], [10]. This is a
sparse, keyframe-based SLAM system, whose name derives
from the ORB features [11] it uses. Bundle adjustment is used
to compute the camera trajectory, and the incorporated Bag-
of-Words method DBoW2 [12] enables re-localization when
tracking is lost. Running on four threads, it achieves stable
and accurate tracking on rectified stereo image pairs from the
laparoscope.

C. Disparity and Depth Estimation

For the 3D reconstruction of the liver, a dense depth map of
the scene is required. Depth information is acquired by stereo
disparity estimation on rectified image pairs. We employ the
Hierarchical Stereo Matching (HSM) network [13], a neural
network that searches for stereo correspondences in a coarse-
to-fine hierarchy. This method delivers high-quality dense



Fig. 2. Screenshot of calibration module within Unity UI, capturing images
of the 3D calibration field for accuracy checking.

disparity, similar to state-of-the-art methods, while being faster
than comparable approaches.

For acceptable throughput, initial versions of our system
processed images downscaled to 1/16 of the laparoscope’s
native FullHD resolution. To benefit from the full resolution
of images, and hence of disparity and depth results, we put
effort into accelerating the HSM algorithm. We applied the
network inference acceleration technique TensorRT [14], and
a pipelining of the pre-processing step using the DALI library
[15], both utilizing the CUDA parallel programming model for
GPUs. In addition, we designed a multithreaded processing
scheme that allows parallel execution of several CPU threads
and the usage of multiple GPUs. As a result, we are now
able to produce FullHD high-quality disparity maps at the
laparoscope’s full rate of 30 frames/s.

D. Segmentation

To separate depth and texture information of the liver from
other abdominal organs and surgical instruments, an automatic
image segmentation is applied to the rectified images. Initially
using a UNet/Ternausnet binary segmentation network [16],
we added dropout [17] and a min-max normalization of all
color channels [18]. To better suit the system requirements,
we newly trained the network with intraoperative images.

The original inference implementation using PyTorch runs
at almost full framerate, but exhibits very high CPU load.
To achieve maximum speed at relatively low CPU load, we
restructured the module, relocating the pre-processing to the
GPU, running inference directly on the results of this step, and
afterwards keeping the data on the GPU for post-processing.

E. Point Cloud Fusion

Natively, ORB-SLAM2 produces only a sparse map of the
surveyed environment based on detected salient points. In
our pipeline we implemented an extension for dense output
as recommended by the ORB-SLAM2 authors [9], [10]. For
each coincident set of camera pose, estimated depth and

Fig. 3. Rendering of rigidly registered preoperative (blue) and intraoperative
models.

segmentation, a point cloud consisting of points belonging to
the liver is created by projecting the left camera image into
object space. With respect to the hue and position of each
point, a counter is updated to record the repeated observance
of points. Once the count for a point exceeds a threshold, it is
included in the dense output, finally producing a dense map.
Previously recorded points, which are no longer visible in the
view frustum, are removed, as they are likely the result of
noise or deformation.

F. Registration

The core of a surgical navigation system is the fusion of the
preoperative data into the intraoperative scene. In our case, the
goal is to align the 3D liver model extracted from the CT scan
with the dense reconstruction of the current scene, as depicted
in Fig. 3. Since there is no fully automatic, real-time non-rigid
liver registration method to date, our registration system is
comprised of a semi-automatic rigid alignment, followed by a
fast non-rigid alignment correction.

The initial rigid alignment is required to bring the preoper-
ative and intraoperative models into rough alignment. We use
a region-based registration method which attempts to find a
rigid transform that aligns user-defined matching regions on
the pre- and intraoperative liver surfaces [19]. To select these
regions, we implement a user-friendly brush-select tool. The
algorithm then uses a weighted iterative closest point method
to calculate the required transform. The alignment procedure
takes a trained user only a short time and usually has to be
performed only once.

This is followed by a non-rigid alignment method which
deforms the preoperative liver mesh in such a way that it aligns
well with the intraoperatively recorded dense point cloud. We
use the V2S-Net [20] for this step, a deep neural network
which was trained on synthetic deformation data to compute
a displacement field between the preoperative organ model
and the partial, noisy intraoperative point cloud. This network
is triggered every time the dense reconstruction is updated,
usually multiple times a second. The geometry of internal
vessels and tumors can then be deformed according to the
estimated displacement field.



G. User Interface

The User Interface of our pipeline serves as a central
application for gaining insight into the most relevant processes,
such as the calibration, depth estimation, segmentation and the
aligned preoperative model. This facilitates easily accessible
control of visualization parameters across modules and enables
real-time rendering. The underlying processes and transmitted
messages can be visualized via ROS standard tools.

The UI is implemented in C# via the cross-platform runtime
environment Unity. Two main modes, preparation and align-
ment, form the UI. In preparation mode, the UI visualizes the
camera calibration, image segmentation and depth estimation.
The segmented image, for example, can be overlayed onto
the raw camera image to evaluate the segmentation results. In
alignment mode, the largest image pane shows a 3D scene
which combines the dense map and the correctly aligned
preoperative model. Furthermore, an additional overlay of the
camera image with the aforementioned scene objects can be
shown. What is visualized in this main scene is highly cus-
tomizable in terms of transparency and model slicing, which
empowers the surgical team with a wealth of possibilities to
secure a strong scene understanding.

III. IMPLEMENTATION

A. ROS Integration

The presented system is implemented as a modular archi-
tecture based on the communication framework ROS [21].
Every part shown in Fig. 1 represents a module or node in the
ROS framework. The communication between the modules
is established with ROS via subscriber/publisher (sub/pub)
transfers, comparable to the UDP protocol, and service calls as
with the TCP protocol. The sub/pub communication is used
to transmit all data, such as camera images. We utilize the
service methods of the ROS framework to establish control
interactions between modules. For example, to control the
calibration process through the UI, the user may start and stop
the calibration or change the mode of operation.

As the user interface is implemented with the development
platform Unity, a special ROS interface to Unity is required. To
this end, the Robotics Hub [22] establishes the communication
to the ROS-based modules using a websocket.

B. Hardware Environment

Implementation and test of our system are carried out in an
Experimental Operation Room environment using an Aesculap
EinsteinVision 3.0 FullHD stereo laparoscope [23] on a human
body phantom. We run the prototype using two computers: a
back-end workstation with two Intel Xeon 4216 CPUs and
four NVIDIA A5000 GPUs, and a front-end workstation with
an Intel i9-10900X CPU and an NVIDIA RTX2080 GPU.

For the implementation of the complete processing chain we
developed a distributed-computing model that runs front-end
tasks (image recording, calibration, user interface, etc.) on the
front-end computer, while computationally demanding tasks
are placed on the back-end workstation. With ROS handling
the networking protocols, interfaces were developed for fast

(10 GbE) and ”normal” network connections (1 GbE, requiring
compression/decompression of the transported data).

IV. DISCUSSION & CONCLUSION

Many existing IGS are burdened by the additional setup time
and hardware of an optical tracking system. Despite eliminat-
ing optical tracking, the presented pipeline reliably achieves
good registrations (see Fig. 3). We find this to be the case for
both phantom data and, retrospectively, for data from human
surgeries. For the semi-automatic registration process, 2-3
minutes are required. Subsequent non-rigid updates then occur
automatically, multiple times a second, without additional user
input. Furthermore, the calibration can be performed in under
2 minutes, and is more accessible to non-expert users thanks
to the implemented guidance method. Our system advances on
previous approaches, principally by doing away with external
tracking. Regarding time constraints, our system better meets
clinical requirements by shortening the setup process. With
these improvements, our approach simplifies the setup, and
additionally enables the use of flexible endoscopes. Ultimately,
these aspects significantly lower existing barriers to clinical
translation. However, an assessment of the final registration
accuracy is desirable. While difficult to obtain in-vivo due to
the procedure’s invasive nature, it is feasible using a Human
phantom model and a CT scanner. This aspect is to be
considered in future work.

Additionally, there are various ways in which the pipeline
could be built upon. Aside from increasing the accuracy of all
system components, one area for improvement is the SLAM
system. While effective for this application in relative terms, it
fails to track the camera’s position when the surgeon moves the
laparoscope very quickly, and consequently stops building the
map. Other SLAM systems aim to deal with this issue, such as
ORB-SLAM3 [24]. Yet, in in-lab assessments ORB-SLAM3
did not achieve a framerate comparable to ORB-SLAM2.

ROS serves well as a platform for collaborative development
of the pipeline, by simplifying the integration of separately
developed modules and thus allowing each partner to focus
on their contribution. However, there remain speed limitations
such that when transmitting point cloud data using the frame-
work, we cannot always benefit from the full disparity rate.
Overcoming this issue would enable the 3D reconstruction to
operate even more smoothly.

While many improvements remain to be made before an
IGS can comfortably be used throughout surgery, the system
put forward here represents a large step in this direction.

ACKNOWLEDGMENT

We would like to express our gratitude to the medical
personnel from the Department for Visceral, Thoracic and
Vascular Surgery of University Hospital Carl Gustav Carus,
Dresden, whose provision of data and feedback were essential
throughout the development of the pipeline.



REFERENCES

[1] A. A. Fretland, D. Aghayan, and B. Edwin, “Long-term survival after
laparoscopic versus open resection for colorectal liver metastases.”
Journal of Clinical Oncology, vol. 37, no. 18 suppl, pp. LBA3516–
LBA3516, 2019. [Online]. Available: https://doi.org/10.1200/JCO.2019.
37.18 suppl.LBA3516

[2] C. Schneider, M. Allam, D. Stoyanov, D. Hawkes, K. Gurusamy, and
B. Davidson, “Performance of image guided navigation in laparoscopic
liver surgery - a systematic review,” Surgical Oncology, vol. 38, p.
101637, 2021.

[3] J. S. Heiselman, L. W. Clements, J. A. Collins, J. A. Weis, A. L.
Simpson, S. K. G. M.D., T. P. K. M.D., W. R. J. M.D., and M. I.
Miga, “Characterization and correction of intraoperative soft tissue
deformation in image-guided laparoscopic liver surgery,” Journal of
Medical Imaging, vol. 5, no. 2, pp. 1 – 12, 2017. [Online]. Available:
https://doi.org/10.1117/1.JMI.5.2.021203

[4] G. A. Prevost, B. Eigl, I. Paolucci, T. Rudolph, M. Peterhans, S. Weber,
G. Beldi, D. Candinas, and A. Lachenmayer, “Efficiency, accuracy and
clinical applicability of a new image-guided surgery system in 3D
laparoscopic liver surgery,” Journal of Gastrointestinal Surgery, vol. 24,
no. 10, pp. 2251–2258, 2020.

[5] C. Schneider, S. Thompson, J. Totz, Y. Song, M. Allam, M. Sodergren,
A. Desjardins, D. Barratt, S. Ourselin, K. Gurusamy et al., “Comparison
of manual and semi-automatic registration in augmented reality image-
guided liver surgery: a clinical feasibility study,” Surgical Endoscopy,
vol. 34, no. 10, pp. 4702–4711, 2020.

[6] S. Thompson, J. Totz, Y. Song, S. Johnsen, D. Stoyanov, S. Ourselin,
K. Gurusamy, C. Schneider, B. Davidson, D. Hawkes, and M. J.
Clarkson, “Accuracy validation of an image guided laparoscopy
system for liver resection,” in Medical Imaging 2015: Image-Guided
Procedures, Robotic Interventions, and Modeling, R. J. W. III and
Z. R. Yaniv, Eds., vol. 9415, International Society for Optics
and Photonics. SPIE, 2015, pp. 52 – 63. [Online]. Available:
https://doi.org/10.1117/12.2080974

[7] T. P. Kingham, S. Jayaraman, L. W. Clements, M. A. Scherer, J. D.
Stefansic, and W. R. Jarnagin, “Evolution of image-guided liver surgery:
transition from open to laparoscopic procedures,” Journal of Gastroin-
testinal Surgery, vol. 17, no. 7, pp. 1274–1282, 2013.

[8] M. Hardner, R. Docea, and D. Schneider, “Guided calibration
of medical stereo endoscopes,” The International Archives of
the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. XLIII-B2-2022, pp. 679–686, 2022. [Online]. Avail-
able: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/
XLIII-B2-2022/679/2022/

[9] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular SLAM system,” IEEE transactions on
robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[10] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[11] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient
alternative to SIFT or SURF,” in 2011 International Conference on
Computer Vision, 2011, pp. 2564–2571.
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