
DebugAR: Mixed Dimensional Displays
for Immersive Debugging of
Distributed Systems

Patrick Reipschläger
Interactive Media Lab Dresden
Technische Universität Dresden
Dresden, Germany
patrick.reipschlaeger@tu-
dresden.de

Stefan Gumhold
CGV lab
Technische Universität Dresden
Dresden, Germany
stefan.gumhold@tu-dresden.de

Burcu Kulahcioglu Ozkan
MPI SWS
Kaiserslautern, Germany
burcu@mpi-sws.org

Rupak Majumdar
MPI SWS
Kaiserslautern, Germany
rupak@mpi-sws.org

Aman Shankar Mathur
MPI SWS
Kaiserslautern, Germany
mathur@mpi-sws.org

Raimund Dachselt
Interactive Media Lab Dresden
Technische Universität Dresden
Dresden, Germany
dachselt@acm.org

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada
ACM 978-1-4503-5621-3/18/04.
https://doi.org/10.1145/3170427.3188679

Abstract
Distributed systems are very complex and in case of er-
rors hard to debug. The high number of messages with non
deterministic delivery timings, as well as message losses,
data corruption and node crashes cannot be efficiently ana-
lyzed with traditional GUI tools. We propose to use immer-
sive technologies in a multi-display environment to tackle
these shortcomings. Our DebugAR approach shows a rep-
resentation of the current systems state, message prove-
nance, and the lifetime of participating nodes and offers
layouting techniques. By providing a screen that shows
a traditional text-log, we bridge the gap to conventional
tools. Additionally, we propose an interactive 3D visualiza-
tion of the message flow, combining an interactive tabletop
with augmented reality using a head-mounted display. We
are confident that our proposed solution can not only be
used to analyze distributed system, but also for other time-
dependent networks.

Author Keywords
Distributed Systems, Debugging, Augmented Reality, Inter-
active Surfaces, Multi-display Environments, 3D Visualiza-
tions

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: UI

https://doi.org/10.1145/3170427.3188679


Introduction
As cloud computing is getting widespread, distributed sys-
tems have become the common computing environment for
many applications. Many popular services such as social
media and networking applications, photo/video stores, and
e-commerce sites operate on modern distributed systems.
The design and analysis of distributed systems is much
harder than for single systems, as they consist of a complex
set of hardware and software components. While the sys-
tem logic of a distributed system is highly encoded within
the communication between components, high concurrency
and asynchrony result in many different orderings of the
in-transit messages. To design such distributed systems,
a programmer needs to take these issues into account, as
well as consider possible hardware failures [12]. Traditional
2D software tools are often not sufficient to support pro-
grammers in debugging such systems. Examples would
be a bug caused by message ordering violations, which
took a whole day to study [12], or a bug caused by a com-
bination of several node crashes and reboots in Apache
ZooKeeper [2].

We propose DebugAR, an easy-to-understand, yet powerful
analysis tool for debugging distributed systems, using im-
mersive technologies to expand the debugging capabilities
of existing tools. By using a multi-display environment con-
sisting of a text-log on a conventional desktop monitor and
a sophisticated 3D visualization on an interactive surface,
we bridge the gap to more traditional tools, which in con-
trast often utilize only a single screen. Furthermore, we use
head-mounted Augmented Reality (AR) in conjunction with
the interactive surface. This enables us to extend the output
space of the displays to the third dimension, and to use nat-
ural multi-touch interaction to manipulate the visualization
and explore vast datasets.

Figure 1: Setup of our proposed system, showing a conventional
desktop monitor with a text-log on the left and an interactive
surface with the AR 3D visualization on the right.

Related Work
Several tools were designed for the analysis and debugging
of distributed systems [3, 6, 9]. Many of these tools involve
some type of visualization to increase the comprehension of
the system, which includes several distributed components
and complex interactions between them. Typically, these
tools extract some information statically from source code
or dynamically from execution. They then process and dis-
play the information in a graphical form. Visualization of dis-
tributed system executions is investigated both for analyzing
the performance [15] and the communication between the
distributed nodes [1]. Most of these tools visualize the ex-
ecutions in a 2D environment. The increasing availability
of 3D visualization frameworks and devices allows exploit-
ing the third dimension for analysis. Recent work utilizes
3D for visualizing static information about the software, like
Bonyuet et al. [4] or Codepark by Khaloo et al. [10]. From



the related work, we derived a set of requirements for a
visualization to be a useful debugging tool for distributed
systems (see left sidebar).

Our proposed concept of using multiple visualizations for
the analysis is an example for a multi-display environment
(MDE). MDEs consist of heterogeneous displays, which of-
ten do not constitute a continuous display space (with the
exception of, e.g., BendDesk [14]), and which have been
applied to various application areas, including visual an-
alytics [5]. A more specialized area are distributed user
interfaces, where components are distributed across one
or more of the dimensions input, output, platform, space,
and time [7]. There have also been examples of using Aug-
mented Reality in combination with conventional displays
as early as 1991 with Hybrid User Interfaces by Feiner and
Shamash [8]. Most of these works are primarily concerned
with distributing the user interface itself and do not focus on
visualizations specifically. Coordinated & multiple views [13]
for visualizations provide synchronizing interaction across
these views by using techniques like linking and brushing.
In contrast to MDEs, these systems however are mostly lim-
ited to non-distributed display setup, although there is work
from Langner et al. [11] using multiple mobile devices. To
the best of our knowledge, our tool is the first to utilize a hy-
brid immersive environment for the analysis and debugging
of distributed systems.

Concepts

Requirements for visualiz-
ing distributed systems

a) Representation of the
current system state:
A programmer needs to
be immediately aware of
which nodes are alive or
in a crashed state, which
node is the leader, which are
followers, etc.

b) Configurable layout: The
location of the nodes within
the system are of significant
concern for the programmer’s
mental map of the system.

c) Message provenance:
It is important to be able to
identifying problematic com-
munication patterns, and
track the causality of events
within the system.

d) Aggregated views: In
case of deep bugs the cur-
rent state of nodes does not
provide sufficient informa-
tion, requiring an aggregated
view of all crashes/reboots
of nodes together with their
corresponding messages.

The essence of our DebugAR concept is to support the de-
bugging of distributed system by using an immersive multi-
display environment (MDE) to visualize the data flow and
state of all involved actors. Our proposed MDE consists
of two screens (see Figure 1): The first one is a conven-
tional desktop monitor primarily showing a text-log of the
messages between actors. It provides programmers with a

Figure 2: Detailed picture of AR 3D visualization showing:
a) The actor lifelines, b) color coded messages between the
actors, c) state indicators on actor lifelines, d) pinned messages,
e) the lock symbol, and f) the slider widget.

familiar debugging-tool similar to traditional systems. The
second screen is a tilted interactive multi-touch surface and
shows a 3D visualization of the distributed systems exe-
cution traces over time. It is generated by the display in
conjunction with Augmented Reality (AR), provided by a
head-mounted display (HMD). In the following, we focus on
the 3D visualization as a new, immersive form of debugging
and how it aids the programmers in understanding the sys-
tem behavior, as well as on the connection between both
displays.

3D Visualization The 3D visualization shows the de-
velopment of the distributed system over time by visualiz-
ing node lifelines, their color-coded state at discreet time
frames, and the sequential order of the messages passed
between them. The current time-step is located directly on
the screen of the interactive surface. Colored spheres on
a nodes lifeline encode its current state at discreet time



steps (see Figure 2c), for example if a node has crashed or
whether it has recovered again. Messages between nodes
are displayed as animated color-coded lines between those
spheres, indicating the type and direction of the message
(see Figure 2b). This makes it easy for a programmer to
perceive the current state of the system.

The space above the display is used to visualize previous
time steps, while future ones are visualized behind the dis-
play. Depending on user preferences, a time step itself is
defined either by a single message passed between two
nodes, or by an aggregation of messages between discreet
time steps. The number of time steps visible above and be-
low the display can also be configured by the user. All other
time steps beyond the adjustable limit are faded out and
only become visible if the current time frame is modified
accordingly.

The lifetime of nodes is visualized by a thick line perpen-
dicular to the display screen (see Figure 2a). This line also
serves as a representation of the node itself and continues
through all the time steps in which a node was active. A
user can choose if a colored sphere is placed on the life-
line at every discreet time step or only when the state of a
node has changed. Regardless of this, the current frame
on the display screen always shows the state of every node
that was alive at that time. All parts of the 3D visualization
are sole AR objects visualized through the HMD the user is
wearing.

To interact with the visualization, the multi-touch capabilities
of the interactive surface are used. A dedicated 2D slider
widget (see Figure 2f) displayed on the surface modifies
the current time frame using simple drag gestures on the
widget, or by taping the buttons at top and bottom of the
widget. The number of visible time steps is increased or
decreased by performing a pinch gesture on the widget.

Inter-Display Connection The two displays, the one
showing the text-log and the other which serves as the host
for the 3D visualization, are intended to be used in conjunc-
tion with each other and not as stand alone devices. Brush-
ing and linking is applied to highlight selected items on both
visualizations. For instance, when a message is selected in
the 3D visualization, it is also highlighted in the same color
within the text log. Furthermore, the currently visible time
frames of both visualizations can be linked together. This
means that moving the current time frame in one visualiza-
tion will also move the other one accordingly, keeping them
synchronized and making it easier for a user to perceive
the current state on both visualizations. The lock can be
enabled or disabled any time by using the lock icon in the
upper left corner of the interactive surface (see Figure 2e).

Message and Node Pinning To get a detailed descrip-
tion of a message or the current state of a node, a user can
tap the corresponding element of the current time frame.
An info box is then pinned on the interactive surface itself
as a 2D object, not as an AR object. This makes use of the
higher resolution of the display in comparison to the AR
HMD, improving the readability (see Figure 2d). The info
boxes can be freely organized by dragging them around the
screen. Pinned objects remain on the display even when
the current time frame is moved. This enables the user to
create a collection of detailed information on messages
and nodes that are of particular interest to him or her when
tracking down a bug.

Layouting To further support a programmer in debugging
of distributed systems, we provide several layouting mech-
anisms, which can be used to organize the actors based
on different aspects. Our default layout aims to maximize
the readability of the visualization by ordering all actors as
a circle with equal spacing between each actor. Messages



between actors will pass through the center of the circle to
minimize the risk of misinterpreting sender and recipient of
a message. However, other than the message flow, this lay-
out has no inherent expression of the relation of actors to
each other. An alternative layout orders all actors based on
the quantity of their communication with each other. Actors
that send a lot of messages to each other are positioned
close to each other, while actors with sparse communica-
tion are further away, resulting in the formation of several
clusters. Additionally, actors can also be layouted by their
physical location (if available), which for example enables
the programmer to check if errors are related to the physical
proximity of the actors. Furthermore, a user can also refine
a layout by simply dragging a node in the current time frame
to another location.

Implementation

Figure 3: Snapshots of our current
prototype showing the 3D
visualization and interactive
surface (Picture taken through
Microsoft HoloLens).

We implemented an early prototype (see Figure 3) to demon-
strate the main aspects of our concepts, using the Unity 3D
engine for the 3D visualization and the MS HoloLens as AR
HMD. Unity and WPF are used for the display clients. For
the communication between all involved devices we use
a client-server architecture, where all clients connect to a
central server. Clients can send events to indicate interac-
tion or state changes, and other clients can subscribe to
events of specific types and get notifications. One challenge
for our system is to synchronize the coordinate systems of
the interactive surface and the HoloLens for the 3D visual-
ization, to make sure AR objects appear correctly in relation
to the display. We use AR markers, displayed on the inter-
active surface during an initial configuration step, which are
detected by the HoloLens (using ARToolKit) and used to
place an anchor/root for the 3D visualization.

Conclusion
We presented DebugAR, an immersive environment for
debugging distributed systems. Our proposed concept pro-
vides a representation of the current system state through
our Augmented Reality 3D visualization, combined with a
horizontal multi-touch display, as well as several layouting
techniques. Thus, it addresses some of the requirements
for visualizations of distributed systems (see Requirements
Sidebar). Wo do not yet support message provenance and
aggregated views, be plan to add these capabilities in the
future. While still at an early stage, we believe our solution
has a lot of potential to be a useful tool in supporting pro-
grammers in their debugging-tasks. Verifying this claim of
course requires conducting a user study, comparing our so-
lution to current debugging environments. We are confident
that the idea of combining vertical and horizontal desktop
monitors with an Augmented Reality visualization is suitable
not only for debugging distributed systems, but analyzing
other types of time-dependent networks as well.

Acknowledgments
This work was partially funded by
BMBF Project No. 01IS14014 (ScaDS).

REFERENCES
1. Jenny Abrahamson, Ivan Beschastnikh, Yuriy Brun,

and Michael D. Ernst. 2014. Shedding Light on
Distributed System Executions. In Proc. ICSE’14. ACM,
New York, NY, USA, 598–599. DOI:
http://dx.doi.org/10.1145/2591062.2591134

2. Apache Issues. 2017. Zookeper-335. http:
//issues.apache.org/jira/browse/ZOOKEEPER-335.
(2017). Accessed: 2017-12-11.

3. Elisa Gonzalez Boix, Carlos Noguera, Tom
Van Cutsem, Wolfgang De Meuter, and Theo D’Hondt.

http://dx.doi.org/10.1145/2591062.2591134
http://issues.apache.org/jira/browse/ZOOKEEPER-335
http://issues.apache.org/jira/browse/ZOOKEEPER-335


2011. REME-D: A Reflective Epidemic
Message-oriented Debugger for Ambient-oriented
Applications. In Proc. SAC’11 (SAC ’11). ACM, New
York, NY, USA, 1275–1281. DOI:
http://dx.doi.org/10.1145/1982185.1982463

4. D. Bonyuet, M. Ma, and K. Jaffrey. 2004. 3D
visualization for software development. In Proc.
ICWS’04. 708–715. DOI:
http://dx.doi.org/10.1109/ICWS.2004.1314802

5. Lauren Bradel, Alex Endert, Kristen Koch, Christopher
Andrews, and Chris North. 2013. Large High
Resolution Displays for Co-located Collaborative
Sensemaking: Display Usage and Territoriality. Int. J.
Hum.-Comput. Stud. 71, 11 (Nov. 2013), 1078–1088.
DOI:

http://dx.doi.org/10.1016/j.ijhcs.2013.07.004

6. Darren Dao, Jeannie Albrecht, Charles Killian, and
Amin Vahdat. 2009. Live Debugging of Distributed
Systems. In Proc. CC’09 (CC ’09). Springer-Verlag,
Berlin, Heidelberg, 94–108. DOI:
http://dx.doi.org/10.1007/978-3-642-00722-4_8

7. Niklas Elmqvist. 2011. Distributed User Interfaces:
State of the Art. Springer London, London, 1–12. DOI:
http://dx.doi.org/10.1007/978-1-4471-2271-5_1

8. Steven Feiner and Ari Shamash. 1991. Hybrid User
Interfaces: Breeding Virtually Bigger Interfaces for
Physically Smaller Computers. In Proc. UIST’91 (UIST
’91). ACM, New York, NY, USA, 9–17. DOI:
http://dx.doi.org/10.1145/120782.120783

9. Dennis Geels, Gautam Altekar, Scott Shenker, and Ion
Stoica. 2006. Replay Debugging for Distributed
Applications. In Pro. ATEC’06 (ATEC ’06). USENIX
Association, Berkeley, CA, USA, 27–27. http:
//dl.acm.org/citation.cfm?id=1267359.1267386

10. Pooya Khaloo, Mehran Maghoumi, Eugene Taranta,
David Bettner, and Joseph Laviola. 2017. Code Park: A
New 3D Code Visualization Tool. In Proc. VISSOFT’17.
IEEE, 43–53.

11. Ricardo Langner, Tom Horak, and Raimund Dachselt.
2017. VisTiles: Coordinating and Combining
Co-located Mobile Devices for Visual Data Exploration.
IEEE Trans. Vis. Comput. Graph. 24, no. 1 (10 2017),
11. http://dx.doi.org/10.1109/TVCG.2017.2744019

12. Tanakorn Leesatapornwongsa, Jeffrey F. Lukman,
Shan Lu, and Haryadi S. Gunawi. 2016. TaxDC: A
Taxonomy of Non-Deterministic Concurrency Bugs in
Datacenter Distributed Systems. SIGPLAN Not. 51, 4
(March 2016), 517–530. DOI:
http://dx.doi.org/10.1145/2954679.2872374

13. J. C. Roberts. 2007. State of the Art: Coordinated
Multiple Views in Exploratory Visualization. In Proc.
CMV’07. 61–71. DOI:
http://dx.doi.org/10.1109/CMV.2007.20

14. Malte Weiss, Simon Voelker, Christine Sutter, and Jan
Borchers. 2010. BendDesk: Dragging Across the
Curve. In Proc. ITS’10 (ITS ’10). ACM, New York, NY,
USA, 1–10. DOI:
http://dx.doi.org/10.1145/1936652.1936654

15. C. Eric Wu, Anthony Bolmarcich, Marc Snir, David
Wootton, Farid Parpia, Anthony Chan, Ewing Lusk, and
William Gropp. 2000. From Trace Generation to
Visualization: A Performance Framework for Distributed
Parallel Systems. In Proc. SC’00 (SC ’00). IEEE
Computer Society, Washington, DC, USA, Article 50.
http://dl.acm.org/citation.cfm?id=370049.370458

http://dx.doi.org/10.1145/1982185.1982463
http://dx.doi.org/10.1109/ICWS.2004.1314802
http://dx.doi.org/10.1016/j.ijhcs.2013.07.004
http://dx.doi.org/10.1007/978-3-642-00722-4_8
http://dx.doi.org/10.1007/978-1-4471-2271-5_1
http://dx.doi.org/10.1145/120782.120783
http://dl.acm.org/citation.cfm?id=1267359.1267386
http://dl.acm.org/citation.cfm?id=1267359.1267386
http://dx.doi.org/10.1109/TVCG.2017.2744019
http://dx.doi.org/10.1145/2954679.2872374
http://dx.doi.org/10.1109/CMV.2007.20
http://dx.doi.org/10.1145/1936652.1936654
http://dl.acm.org/citation.cfm?id=370049.370458

	Introduction
	Related Work
	Concepts
	Implementation
	Conclusion
	Acknowledgments
	REFERENCES 

