Three-Dimensional Widgets Revisited – Towards Future Standardization

Dr.-Ing. Raimund Dachselt and Michael Hinz
TU Dresden, Department of Computer Science, MMT Group
Outline

- Problems and Motivation
- Related Work
- Classification of 3D-Widgets
- Consistent Widget Specification
- Conclusion and Future Work
Problems and Motivation

- **3D User Interfaces**
 - Basically in VR applications for experts using specialized HW
 - Future alternative of present WIMP interfaces with great potential

- **Desktop-VR**
 - Broader variety of application domains including OS interfaces
 - 3D-Widgets [2]: especially important for Desktop-VR
 - Desktop 3D applications for the mass market? Standardization!
Problems and Motivation

■ Problems
 - Lack of 3D design standards and guidelines
 - Lack of ready-to-use general purpose 3D widgets
 - Unifying classification & consistent description of 3D widgets missing

■ Vision
 - Repertoire of well-defined, standardized 3D widgets (and 3D interaction techniques)
 - Towards standards for desktop VE and 3D-UIs
Related Work

- 3D Widgets [2]
 - More than 200 solutions already developed
 - 3D widget libraries and toolkits, e.g. it3d [9]
 - First 3D widgets overview by Leiner et al. [6]
 - Few other partial classification approaches (e.g. [11])

- VR interaction techniques
 - Various 3D interaction techniques available (e.g. [1])
Classification Approach

- Only for existing 3D widget solutions which
 - have a geometric representation,
 - are general enough to be used in various 3D projects.
 - Focus on widgets for system/application control incl. 3D menus

- Various criteria considered [3]
 - application area
 - interaction task
 - input device / degree of freedom
 - appearance
 - interaction purpose / intention of use
 - facilitates the practical use of widgets in real 3D projects
Classification of 3D-Widgets

Direct 3D Object Interaction
- Object Selection
- Geometric Manipulation

3D-Scene Manipulation
- Orientation and Navigation
- Scene Presentation Control

Exploration and Visualization
- Geometric Exploration
- Hierarchy Visualization
- 3D Graph Visualization
- 2D-Data and Document Visualization
- Scientific Visualization

System / Application Control
- State Control / Discrete Valuators
- Continuous Valuators
- Special Value Input
- Menu Selection
- Containers

Menu Selection
- Temporary Option Menus
 - Rotary Tool Chooser
 - Menu Ball
 - Command & Control Cube
 - Popup Menu
 - Tool Finger
 - TULIP
- Single Menus
 - Ring menu
 - Floating Menu
 - Drop-Down-Menu
 - Revolving Stage
 - Chooser Widget
 - 3D-Palette, Primitive Box etc.

Menu Hierarchies
- Hands-off Menu
- Hierarchical Pop-Up Menus
- Tool Rack
- 3D Pie Menu
 - Hierarchy Visualizations
Specification of 3D-Widgets

- Classification of more than 70 Widgets in 38 classes by now
 - Classification online: www.3d-components.org
- Similar solutions presented as a singular widget type
- Sample Ring Menu [7]: Consistent specification needed
- Goal: specification data sheets for widgets
Specification of 3D-Widgets

- XML-Schema based specification language \([3],[4]\)
 - within the research project CONTIGRA
 - defines interfaces of 3D widgets/components
 - Common metadata for each widget type:
 name, description, author, publication, picture
 - Set of high-level parameters describing
 the functionality and configuration options
Conclusion and Future Work

- Contribution towards the standardization of 3D user interfaces
 - Classification and specification of 3D-Widgets

- Future Work
 - Refinement and extension of the widget repertoire
 - Discussion of parameters/functionality among experts
 - Integration of 3D interaction techniques
Discussion

Widget Classification: www.3dcomponents.org
Project Website: www.contigra.com
And that’s Raimund:
References

- [8] Online Widget Classification: www.3d-components.org