
BEHAVIOR3D: An XML-Based Framework
for 3D Graphics Behavior

Raimund Dachselt, Enrico Rukzio
Dresden University of Technology, Department of Computer Science

Heinz-Nixdorf Endowed Chair for Multimedia Technology
01062 Dresden, Germany

{raimund.dachselt, enrico.rukzio}@inf.tu-dresden.de

Abstract
Success of 3D applications on the Web inherently depends on
object behavior and interaction. Current Web3D formats often fall
short in supporting behavior modeling. This paper introduces a
flexible concept for declaratively modeling 3D object behaviors.
Based on Extensible 3D (X3D) a node concept is suggested with
object-oriented features such as inheritance, strong typing, and
polymorphism. An XML-based language Behavior3DNode serves
the interface definition of new nodes. Their implementation is
simplified by automated code generation. A novel grammar
generation mechanism collects all existing nodes in a dynamic
XML Schema. Thus new behavior nodes can be used along with
built-in nodes as first class scene graph elements. A rich set of
predefined behaviors is proposed, among them Animation and
State Machine node collections. The concepts were successfully
implemented with VRML97/X3D and integrated into a 3D
component approach.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems � Animations. I.3 [Computer Graphics]:
I.3.6 Methodology and Techniques � languages, standards. I.3.7
Three-Dimensional Graphics and Realism � animation, virtual
reality. D.2.11 [Software Engineering]: Software Architectures �
domain-specific architectures, declarative languages.

General Terms
Design, Standardization, Languages.

Keywords
Animation, Behavior Language, Object Behaviors, Dynamic
Grammar, XML-Schema, Extensible 3D (X3D), SMIL, Contigra

1. Introduction
The availability of 3D technologies on consumer platforms is
continuously growing. This is a result of permanent improve-
ments in 3D accelerated graphics hardware and enhancements of
3D software systems. The widespread usage of Internet
technologies and the development of a multitude of proprietary
Web-based 3D formats consequently resulted in an increasing
number of 3D-enhanced Web applications. Though promising

results already exist in domains such as electronic commerce,
computer assisted learning, sports, avatars, or entertainment, only
few success stories about 3D graphics on the World Wide Web
can be told. Success and further progress in this field inherently
depends on compelling 3D content. It should be a media rich and
highly interactive content to actually drive enabling applications.
As far as object geometry and media assets are concerned, a
variety of excellent modeling and authoring tools and format
converters already exist. There are various interesting proprietary
Web3D technologies and associated authoring tools to produce
such media-rich 3D content. However, most of them are tailored
to specific application domains and limited in producing really
interactive and dynamic 3D scenes.
Proprietary solutions offer some convincing functionality to
author specific behaviors such as animations or simple object
interactions. However, they fall short in providing additional
behavior types. Among the interesting solutions are tools such as
Virtools Dev [Virtools Dev] and Cult3D Designer [Cult3D].
Developers face the disadvantage, that the underlying formats are
mostly not disclosed. Therefore necessary behavior extensions are
not easy to accomplish, if possible at all. Script languages are
basically the only way to achieve application-specific complex
behaviors. VRML97 [VRML97] as the standard for 3D graphics
on the Web and its successor Extensible 3D (X3D) [X3D
Specification] offer more flexibility through built-in behavior-
related nodes, script nodes, and extensibility mechanisms.
However, creating complex object behaviors and reusing them in
other projects is far from being a simple task. Although
sophisticated solutions exist for producing and especially reusing
dynamic web pages and other media content, projects with
interactive 3D graphics are often developed from scratch. They
mostly demand programming skills or at least knowledge of
scripting languages. Therefore it excludes non-programmers from
designing 3D applications, which remains a tedious work.
This problem cannot be attributed to the authoring process alone,
but initially depends on the capabilities of the underlying 3D
formats. They usually employ scene graphs and focus on
geometry, appearance, and simple dynamic behavior. With
respect to complex behaviors and reuse of behavior building
blocks they often fall short. Taking the mentioned problems into
account we conceive our vision of an extensible, flexible and
unifying description format for behaviors and interactions. It
should be an open format, relate to standards, and it should simply
integrate into existing 3D technologies. A rich set of predefined
and classified behavior modules should be available. To reduce
programming for non-expert users we propose a declarative
format, thus being a reasonable basis for authoring tools.
The work presented in this paper is part of the research project
CONTIGRA (Component OrieNted Three-dimensional Interactive
GRaphical Applications) [Dachselt et al. 2002]. A declarative

component architecture based on X3D [X3D Specification] was
designed for the easy construction of Web-enabled, desktop
Virtual Reality applications and 3D scenes. The document-
centered approach is founded on XML Schema [XML Schema]
languages describing the interface and implementation of 3D
components as well as their configuration, assembly, and linking.
A component implementation consists of three independent scene
graphs containing geometry, audio, and behavior information. A
separated link section connects their relevant nodes. The
BEHAVIOR3D approach introduced here facilitates the construction
of a component�s behavior graph. The focus of this work lies on
the behavior language itself as a basis for future authoring tools.
This paper is organized as follows. The next section relates our
work to existing approaches. This is followed by a critical
investigation of X3D behavior concepts and a definition of
deduced requirements. The main part introduces BEHAVIOR3D
with its node concept, new markup languages, and behavior node
collections. Thereafter section 5 describes one possible
implementation of BEHAVIOR3D with X3D, the integration into
the CONTIGRA project, and an interactive 3D example. The paper
is finished by a discussion particularly examining implications of
the concept for X3D and an outline of future work.

2. Related Work
Powerful 3D graphics APIs such as Open Inventor and Java3D
exist for imperative modeling of 3D object behaviors. Although
almost any task can be accomplished with such 3D class libraries,
programmer�s knowledge is inevitable. Instead, declarative
modeling of behavior will be the focus of this work.

The term behavior throughout this paper refers to Roehl�s
definition, where four levels of behavior are distinguished: direct
modification of an entity's attributes defines level 0; the change of
an entity's attributes over time constitutes level 1; level 2
comprises a series of calls to level 1 behaviors to perform some
task; level 3 after all is characterized as top-level decision-making
[Roehl 1995]. All levels should be well supported by a behavior
language. The separation of graphs within the CONTIGRA project is
based on the idea of an independent behavior graph developed in
[Döllner and Hinrichs 1998]. It allows both the geometry-
independent modeling of behaviors and their easy adaptation and
exchange. Since many relationships are more of a temporal than a
spatial nature, mixing of geometry and behavior into one single
graph will only scarcely be indicated. It has to be mentioned, that
the term behavior graph was derived from the term scene graph,
though behavior graphs can often be represented in simple or even
flat hierarchies.

Various declarative Web3D formats were analyzed for this work.
The standardized VRML97 [VRML97] scene graph contains
various nodes � which might generate and receive events � and a
routing mechanism to propagate scene changes. Beside writing
node and route statements, authors can employ script nodes to
realize almost arbitrary functionality. To achieve reusability of
sub graphs, a set of nodes can be encapsulated with the prototype
concept. A few behavior extensions were already proposed to
VRML97, such as WaveInterpolator and RolloverSensor [VRML
2.0 PROTO], as well as prototypes for event manipulation,
arithmetic, Boolean logic, and event filters [Seidman 1998].
Proposals of the VRML Object-Oriented Extensions Working
Group [VRML Object-Oriented] for object-oriented VRML

extensions influenced this work. VRML++, developed by [Diehl
1997], was thereby of special interest. A new class concept
including abstract classes was proposed along with this object-
oriented approach. However, the disadvantage of a third concept
beside built-in nodes and prototypes has to be noticed.
Inheritance, an improved type concept, and polymorphism greatly
enhanced VRML reusability, runtime stability, and
maintainability. Unfortunately most of these concepts were not
yet integrated into the successor X3D.
With the X3D specification [X3D Specification] a new XML
encoding and various extensibility concepts were introduced.
New behavior nodes and groups of nodes, e.g. the Event Utility
component, were suggested. Some object-oriented concepts were
introduced with the ongoing development of the X3D XML
Schema [X3D-Schema] and Scene Authoring Interface (SAI)
[SAI]. A detailed analysis can be found in the next chapter.
With its Binary Format for Scenes (BIFS) [MPEG-4] another
standardized format, MPEG-4, provides a scene graph based
language comparable to VRML97. Additional nodes allow the
definition of character faces and bodies along with the declaration
of their animation. Together with the BIFS animation protocol it
is a powerful format well suited in particular for character
animation and 2D/3D composition. The Avatar Markup Language
[Kshirsagar et al. 2002] is based on XML and MPEG-4 and
likewise oriented towards avatar animations.
One of the proprietary formats, Viewpoint [Viewpoint], uses an
XML-based scene description language containing so called
Scene Interactors for defining behaviors. The state machine
paradigm forms the basis of the event handling and influenced a
part of our work. Actions can be declared, which might be state-
dependent or not. Although they can encapsulate scene behavior
and can be parameterized, the XML language contains an
inconsistent mixture of elements and concepts.
The Synchronized Multimedia Integration Language (SMIL) 2.0
[SMIL 2.0] is a declarative, XML-based description language for
interactive, animated multimedia applications on the Web. As
such it is not tailored to 3D graphics, but offers neat functionality
with its intuitive time and animation concepts integrating discrete
and continuous media types. Since SMIL 2.0 became quite
complex, related elements, attributes, and attribute values were
grouped into modules and profiles. The animation and timing &
synchronization modules, particularly the synchronization and
grouping elements influenced the development of BEHAVIOR3D.
The work of [Kemkes 2001] already sketches a possible
integration of SMIL concepts into X3D and was considered here
too.
Other behavior-related work includes research on the integration
of various input devices and their mapping to scene behavior
[Althoff et al. 2002, Figueroa et al. 2002]. It was not integrated
into BEHAVIOR3D yet. Research on constraints, e.g. by [Diehl and
Keller 2000] and [Codognet and Richard 1998], was considered
for further language extensions and new behavior collections.
Surveying related work one can observe, that various declarative
languages exist for defining Web3D behaviors. They are partly
XML-based and offer various interesting concepts. Some formats
are specialized for behavior declarations in specific domains
(e.g. character animation). There is no single format integrating
every behavior concept and offering coherent extensibility
mechanisms.

3. Defining Behavior in X3D �
Prospects and Shortcomings

3.1 Format Requirements and Choice of X3D
As the basis of this work a number of general requirements was
made for a powerful behavior definition concept. The format
should be declarative, thus being easy to read and use even for
non-experts. Moreover, it should serve as an exchange format for
behavior definitions independent from specific 3D technologies
and form the basis for authoring tools. It is desirable to separate
the behavior graph from other scene definitions with the objective
of readability, maintainability, and reusability. A rich and
extensible set of behavior modules must be available. That
suggests a modular concept based on object-oriented principles.
Nodes must be ordered in appropriate hierarchies employing
inheritance. Another important goal for developing an expressive
3D behavior concept is the usage of standard formats where
possible or at least to interoperate with them. That is one of the
reasons why VRML97 / X3D was considered as a suitable basis
for this work. It is a powerful and general-purpose format
fulfilling some of the mentioned requirements and providing
various extensibility mechanisms.
However, why is it not favorable to simply use these mechanisms
and create additional behavior nodes with X3D? This chapter
attempts to answer this question by looking closer at the X3D
capabilities for defining behavior and adding new functionality. In
conjunction with this analysis further requirements are defined for
an improved behavior concept related to X3D.

3.2 Using Built-In Behavior Nodes
X3D offers various built-in nodes for defining simple object
animations and interactions according to behavior levels 0 and 1
as defined in [Roehl 1995]. Among them are nodes such as time,
sensors, interpolators, triggers, and sequencers. X3D nodes are
divided into so-called Components, whereas this term refers to
functionally related X3D objects, typically node collections. The
behavior nodes are arranged in the components Environmental
Sensor, Key device sensor, Pointing Device Sensor, Interpolation,
Event Utilities, and Time. There are many recurring application
scenarios, where these pre-defined nodes are not sufficient,
particularly for complex animations or state-based modeling of
3D scenes. That means authors have to use the Script node
described in section 3.3 to realize even common 3D functionality.
With the ongoing development of the X3D XML Schema [X3D-
Schema] and the Scene Authoring Interface (SAI) [SAI] existing
nodes are arranged in a node hierarchy. These steps towards node
classification, stronger typing, and node inheritance facilitate both
the usage of nodes and their implementation. Inheritance should
be applied consequently, so that newly defined nodes profit from
their derivation from existing nodes. Figure 1 depicts a part of the
already proposed hierarchy and the X3D behavior components.
The behavior node hierarchy needs to be extended. All existing,
built-in X3D nodes should be included in the new behavior
concept due to adoption of good concepts and backward
compatibility.

Pointing device sensor component

Environmental sensor
component

Key device sensor
component

SensorNodeType

EnvironmentalSensor-
NodeType

PointingDeviceSensor-
NodeType

KeyDeviceSensor-
NodeType

Collision

ProximitySensor

TimeSensor

VisibilitySensor

KeySensor

StringSensor

DragSensorNodeType TouchSensorNodeType

CylinderSensor

PlaneSensor

SphereSensor TouchSensor

Figure 1. Part of the X3D SAI node hierarchy and

grouping of nodes within X3D components

3.3 Adding Behavior via Script Nodes
The Script node allows authors to write arbitrary event processing
code and perform computations within a 3D scene. It can be seen
as a link between the declarative world of nodes and imperative
programming. The need for integrating complex, previously not
existing behavior via some sort of programming is evident for any
non-trivial 3D application. However, the script node should not be
needed to code common functionality again and again.
Script nodes have a number of disadvantages. They do not
integrate into the object hierarchy and rather constitute an
independent concept. Programmers would like to use inheritance
for script nodes too. Reusability of scripts is not well supported; it
can only be accomplished by wrapping them in prototypes.
Debugging of script languages (e.g. JavaScript) is difficult and
time-consuming in script nodes. Field definitions in script nodes
do not allow safe typing. Assuming a field referencing a node,
authors can only specify data types Node or Nodes, not the
particular node types, e.g. InterpolationNode or node types
derived from it. There is the clear need for polymorphism and
strong typing. Another known problem with fields in VRML97
scripts is the prohibition of access type exposedField in field
declarations. This problem was not completely eliminated in X3D
yet. There should be a unique handling of access types throughout
the format. A last problem to be mentioned is the confusing
mixture of general scene nodes, behavior related nodes, script
nodes, and ROUTE statements within a document. Parts should
be clearly separated for improved maintenance and readability.

3.4 Creating new X3D Nodes with Prototypes
Using the prototype concept new nodes can be defined in terms of
sub graphs of already existing nodes. The X3D specification
[X3D Specification] states, that once defined they can be
instantiated like built-in nodes. However, this is not entirely true,
particularly not for the current X3D XML encoding. Assuming a
prototype being defined in a separate document, an author would
first need to use an Externproto definition before actually using
the new node. In the X3D VRML97 encoding this looks like:
EXTERNPROTO AnimateRotation [
 field MFFloat key
 field MFRotation to
 �
] ["File.wrl"]
�
AnimateRotation {
 key [0 1]
 to [1 0 0 -1.7, 1 0 0 0]
}
In XML syntax the new node really becomes a second-class node,
since it has always to be wrapped within a ProtoInstance element
as shown in the following document fragment.
<ExternProtoDeclare name="AnimateRotation" url="File.x3d">
 <field accessType="field" name="key" type="Floats"/>
 <field accessType="field" name="to" type="Rotations"/>
 �
</ExternProtoDeclare>
�
<ProtoInstance name="AnimateRotation">
 <fieldValue name="key" value="0 1"/>
 <fieldValue name="to" value="1 0 0 -1.7, 1 0 0 0"/>
</ProtoInstance>
Instead of writing a ProtoInstance statement, the direct usage of
the new node via its name would be desirable. Another
disadvantage of both encodings is the lengthy repetition of the
Externproto field interface before actually using it in the scene.
As a consequence new behavior definitions should be liberated
from the burden of out-dated VRML concepts and their associated
syntax.
As with script nodes, another disadvantage of prototypes is again
the missing integration into the X3D XML Schema or SAI object
hierarchy. It is yet another concept within X3D and does not

homogeneously integrate with nodes and scripts. Moreover,
object-oriented features, such as inheritance, polymorphism, a
safe type concept etc. would be desirable. They should seamlessly
integrate into X3D and do not form an additional concept.
Authors shall be able to create new behavior nodes and integrate
them into the existing hierarchy. While using a new node in an
X3D document, users should not need to reflect, whether this
node is built-in, a script node or some other node extension. All
nodes should be first class nodes and require the same
homogeneous syntax.

4. Behavior3D
After having looked at related work and the behavior and
extensibility mechanisms of X3D, this chapter introduces the
novel BEHAVIOR3D concept in detail. Figure 2 illustrates the two
levels behavior node development and usage with all associated
grammars and instance documents. Thus it serves as an overview
of the whole BEHAVIOR3D concept. First of all the general node
concept for defining behavior is explained in section 4.1. In the
following section a new XML Schema grammar Behavior3DNode
is introduced for describing such behavior nodes at the node
development level. Once these nodes are defined, it should be
easily possible to use them as first class nodes in a behavior
graph. For that purpose another grammar, Behavior3D, was
designed for the node usage level. It is an automatically generated
XML Schema integrating all available behavior nodes, thus
providing a repertoire of behavior definitions. This grammar is
described in section 4.3. The concept of behavior node collections
will be introduced afterwards. In Figure 2 they are sketched at the
development level. Collections constitute reasonable behavior
modules comparable to X3D components. After all the actual
implementation of behavior nodes is described in chapter 5.
All grammars and instance documents of BEHAVIOR3D are coded
with XML. The decision for this hierarchical document definition
format was made because of its interoperability, easy processing,
standardized form, widespread use, and general usability. In
particular XML Schema [XML Schema] was chosen because of
its partial support of object-oriented features (e.g. substitution
groups), namespaces, extensibility (e.g. type extensions) as well
as its improved type concept.

Figure 2. Overview of the different BEHAVIOR3D levels, grammars, and instance documents

Node C
Node B are generated from

(Section 5.1)

Level

Behavior Node
Usage

Behavior Node
Development

XML-Grammar

XML Schema
Behavior3D

XML Schema
Behavior3DNode

conform to
(Section 4.2)

BehaviorGraphconforms to

Behavior3D Node Definitions

is generated from all
(Section 4.3)

XML-Instance

Java-Classes
X3D-Prototypes

Implementation

General
Scene Graph Grammar
(e.g. CONTIGRA, X3D)

Scene Graph
Instance

(e.g. CONTIGRA, X3D)

Collection C1

Node A

...

(Section 4.4)

refers to

conforms to

Node M
Node L

Collection C2

Node K

4.1 Basic Node Concept
BEHAVIOR3D comprises a generic object-oriented node concept
merging built-in nodes, scripts, the prototype concept of X3D,
and the class concept of VRML++ [Diehl 1997]. Furthermore an
improved field concept was added. A behavior node is a
constituting part of the behavior graph and represents certain
functionality within a 3D application. Every node might possess
one or many typed fields for defining characteristics of this node.

4.1.1 Fields
Every field has a name, a type, a value, three change modes, and a
possible default value. All X3D field types and all existing
BEHAVIOR3D nodes can be used as field types. The change modes
define the access time of a field. Field values can be assigned
during authoring time (mode configurable), can be changed
during runtime receiving an event (mode receivesEvents), and can
generate events after a change of their value (mode
generatesEvents). The default value of a field can be interpreted
as an initial value and must be set if configurable equals true,
otherwise it is not used. Table 1 lists all possible change mode
combinations of a BEHAVIOR3D field and compares valid value
triples to X3D field access types.

Table 1. Change Modes of Behavior3D-Fields
Combinations

configurable receives
Events

generates
Events

corresponds to
X3D field
access type

1 false false false -
2 false false true eventOut
3 false true false eventIn
4 false true true -
5 true false false field
6 true false true -
7 true true false -
8 true true true exposedField

The comparison of the eight combinations to the X3D field access
types reveals a richer expressiveness of the proposed change
modes. The first combination, where no value can be assigned to
a field at any time, has no practical relevance. However,
combinations 4, 6, and 7 provide a clear definition for typical
application scenarios. Setting 4 can be used for a field, which
cannot be configured but only changed at runtime. This could for
example be an IP address, which is dynamically assigned during
runtime. Setting 6 is typically used for some field reflecting a
current state, number, or item etc. It can be set at configuration
time, generates events during runtime, but cannot be changed
directly at runtime. Setting 7 can be conveniently used for values
initialized at configuration time and changed during runtime. A
typical example might be a font style field that does not need to
generate events.

4.1.2 Inheritance and Composition
Nodes can inherit from other nodes. Only single inheritance is
suggested within BEHAVIOR3D to avoid problems of multiple
inheritance. Node B derived from parent node A inherits all fields
and the implementation of A, respectively the event handling.
That means node B possesses at least all fields of A, but could
add new fields, add new implementation methods, and overwrite
parent node methods. Nodes can be abstract, which prohibits their

instantiation. The notion of abstract nodes allows node designers
to shift shared fields and implementations of different nodes to a
common abstract parent node. Thus implementation stability will
be improved because of frequent use in inheriting nodes. Figure 3
depicts a small portion of the proposed BEHAVIOR3D hierarchy to
illustrate the concept.

Implementation Utilization View

TimeBase
{abstract}

enabled
startTime
begin
stopTime
end
duration
cycleIntervall
loop
cycleCount
cyleTime
active

TimeContainer
{abstract}

ChildNodes

Sequential
nextAnimation

enabled
startTime
begin
stopTime
end
duration
cycleIntervall
loop
cycleCount
cyleTime
active
ChildNodes
nextAnimation

Sequential

Figure 3. Inheritance in BEHAVIOR3D

The abstract node TimeBase provides the basis for all time- and
animation-related behavior nodes. Various fields are defined; a
basic implementation is provided with them. TimeContainer is
another abstract node inheriting from TimeBase. It adds a new
field to accommodate other time-related behavior nodes. With
Sequential the first actually instantiable node is derived from
TimeContainer. It adds another field, nextAnimation. The user of
this node will be offered the complete interface including all
inherited fields as shown on the right. This concept allows the
creation of new behavior nodes based on already existing nodes.
Stability and maintainability of code will be improved,
extensibility is guaranteed.
Beside inheritance node composition is proposed as another
method of reusing nodes. Instances of existing nodes can be
referenced and used inside a newly defined node. Thus their
functionality is reused, but not their structure and complete set of
fields as with inheritance.

4.1.3 Polymorphism and Typing
Every field in BEHAVIOR3D is typed. In comparison to X3D field
types can be substituted by all other types inheriting from it. This
applies in particular to nodes as field types. One specific behavior
node can be demanded as a type of a field. Polymorphism allows
all nodes derived from this parent node to be substituted for the
field both at configuration and runtime. This stronger typing
concept helps preventing runtime errors while instantiating nodes.

4.2 Declaration of new Behavior Nodes
This section introduces the new XML Schema grammar
Behavior3DNode. It represents the realization of the general node
concept and allows the description of a behavior node�s interface

at the development level. Every new node consists of a valid
instance document of this grammar plus some implementation
files. The node interface document is used to automatically
generate the appropriate implementation files as well as the whole
language repertoire of behavior nodes.

4.2.1 Behavior3DNode
Figure 4 depicts an XML Schema diagram of the
Behavior3DNode grammar. Dashed lines depict optional
elements. The symbol with squares in a row denotes a sequence
of elements; the arrow stands for an element reference. A
behavior node declaration consists of a Header, an Interface, and
a UsedNodes part. The Header element contains the self-
explanatory attributes name and documentation as well as
collection. The latter determines this node�s affiliation to behavior
node collections (see section 4.4).
The fields particularly define the characteristics of a node. They
are divided into two groups. The first group Fields contains an
enumeration of Field elements with non-node data types. These
are types such as Color, Rotation etc. They represent the actual
fields of a behavior node, which are later used by setting the
corresponding XML attributes. The second group ChildNodes
contains a definition of all possible behavior child nodes, which
are modeled as field declarations of node data types. These node-
fields later appear in the compact XML syntax as child elements
instead of attributes. Thus they are comparable to children of a
grouping node.
According to the field concept described in section 4.1.1 every
field contains the attributes name, dataType, default, and
description. The element ChangeMode contains the three Boolean
attributes configurable, receivesEvents, and generatesEvents. The
second element Mapping allows a mapping of this field to an
already existing field of another referenced BEHAVIOR3D node.
To continue, the Interface also contains two attributes to realize
inheritance. Attribute extends allows the specification of a parent
node from which this node inherits. Attribute nodeType can
contain the values public or abstract to define, whether it is
allowed to create instance of this node or not.
Within the element UsedNodes other behavior nodes can be
referenced, which are used and needed by this node in terms of
node composition. The Mapping element establishes the
connection from fields of the currently defined node to fields of
the used nodes. The indication of used nodes also helps tools to
check their availability in terms of interface and implementation
documents.

4.2.2 Examples
The following two examples illustrate, how behavior nodes are
defined with the previously described grammar. At first the
declaration of the behavior node TimeContainer is given:
<Behavior3DNode>
 <Header name="TimeContainer" collection="Animation"/>
 <Interface nodeType="abstract" extends="TimeBase">
 <ChildNodes>
 <Field dataType="TimeBase" minOccurs="0"
 maxOccurs="unbounded" description="The
 Animations, which should be controlled.">
 <ChangeMode configurable="true"
 receivesEvents="false"
 generatesEvents="false"/>
 </Field>
 </ChildNodes>
 </Interface>
</Behavior3DNode>

The attribute collection declares this node to belong to the
behavior node collection Animation described in section 4.4.1.
The node is of abstract type, as indicated with the nodeType
value. A TimeContainer has no declared attribute fields (i.e. the
Fields part is missing) yet possible ChildNodes. They are defined
as fields of a complex data type, i.e. of one of the node data types.
By means of polymorphism non-abstract and also derived nodes
can be used within instance documents. In this case a
TimeContainer allows zero to infinite nodes to be used as
children, which are derived by the abstract node type TimeBase.
ChangeMode indicates, that child elements can only be added at
configuration time and must not be changed during runtime.
In the second example the Sequential node is declared, which
inherits from TimeContainer as declared with the attribute
extends.
<Behavior3DNode>
 <Header name="Sequential" collection="Animation"/>
 <Interface nodeType="public" extends="TimeContainer">
 <Fields>
 <Field name="nextAnimation" dataType="Boolean"
 description="Stops the current animation and starts
 the next animation">
 <ChangeMode configurable="false"

 receivesEvents="true" generatesEvents="false"/>
 </Field>
 </Fields>
 </Interface>
</Behavior3DNode>
In contrast to its abstract parent node this node can be
instantiated. No child nodes are declared, but one additional field

Figure 4. A diagram of the Behavior3DNode XML Schema

nextAnimation of Boolean type. It cannot be configured before
runtime and can only receive events. As a result it stops the
currently running animation and triggers the next animation
defined in the sequence of actions within a Sequential node.
It has to be noticed, that all fields of a basic data type � which are
defined within the Fields element � will be translated to XML
attributes of the grammar described in the next section. All node-
typed fields declared within the element ChildNodes (as in
TimeContainer) will be translated to XML content elements of the
defined node, i.e. a sequence of elements of the given type.

4.3 Defining the Behavior3D Node Repertoire
The behavior nodes defined with Behavior3DNode shall be used
within scene graphs on the usage level as shown in Figure 2. To
achieve their integration one could use a generic language
construct comparable to X3D prototypes. However, once a
collection of behavior nodes was defined it would be preferable to
use these nodes as first class nodes in a behavior graph. That
means, instead of writing statements like <ProtoInstance
name="AnimateRotation"� as described in section 3.4, it would be
better to directly include <AnimateRotation key="0 1" � /> in a
behavior definition. As a consequence all (newly defined)
behavior nodes should be specified by a grammar in the same way
like already existing nodes of the general scene graph grammar.
For that purpose the new XML Schema Behavior3D was
developed, which represents the complete repertoire of available
behavior nodes. The idea is to automatically generate this
grammar from a given number of document locations. Within the
translation process, all Behavior3DNode instance documents �
each representing a single behavior node � are collected and
transformed to be part of the whole grammar. Since this grammar
is dynamically generated, it always includes the whole available
repertoire of behavior nodes. An XSLT [XSL] stylesheet was
developed to do the actual translation and grammar generation
work. This process can be activated e.g. every time an authoring
tool will be started. The process is illustrated with a single node
definition according to the Behavior3DNode grammar. An
AnimateRotation node is defined at the development level:
<Behavior3DNode>
 <Header name="AnimateRotation"/>
 <Interface/> <!-- Interface part omitted -->
</Behavior3DNode>
The following XML fragment shows the result of the translation
process. It is the generated definition for the AnimateRotation
node, which will be one part of the Behavior3D grammar.
<element name="AnimateRotation" type="AnimateRotationType"
 substitutionGroup="Animation"/>
<complexType name="AnimateRotationType">
 <complexContent>
 <extension base="AnimationType">
 <attribute name="key" type="x3d:Floats"/>
 <attribute name="to" type="x3d:Rotations"/>
 <attribute name="by" type="x3d:Rotations"/>
 </extension>
 </complexContent>
</complexType>
Through the import of Behavior3D into other scene graph
grammars all nodes are immediately available as first class
elements. The third example shows part of the actual behavior
graph instance document on the usage level. One can notice, how

AnimateRotation is directly used in comparison to the X3D
examples given in section 3.4.
<Sequential begin="5.0">
 <AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.5"/>
</Sequential>

4.4 Behavior Node Collections
The previous examples already introduced some of the new
behavior nodes. However, with BEHAVIOR3D a larger number of
nodes were defined including all behavior-related X3D nodes
mentioned in section 3.2. The concept of behavior node
collections is proposed to group functionally and semantically
related nodes. The following collections were already defined:
Time, Event Utilities, Interpolation, and Environmental Sensor
including behavior nodes from existing X3D components and
additional nodes for type conversions, logical operations etc.;
general Device Sensor collections including X3D�s Pointing
Device Sensor and Key Device Sensor. In the future these
collections could also include other devices nodes as for example
described in [Althoff et al. 2002]. Two other collections were not
only completely specified in terms of Behavior3DNode instance
documents, but also implemented as Java classes: Animation and
State Machine. Since these collections have no equivalent in X3D
they shall be introduced in the following sections in detail. We
also propose a Constraints collection, which was not defined yet.

4.4.1 Animation
This behavior node collection was particularly developed to
overcome the shortcomings in defining complex animations in
Web3D formats such as X3D, Shockwave3D, and Viewpoint. On
the other hand SMIL 2.0 allows the intuitive declaration of
basically 2D animations. Therefore important SMIL 2.0 concepts
were adapted from the Animation Modules and Timing and
Synchronization Module [SMIL 2.0] to the field of 3D graphics.
Three abstract nodes form the basis of this collection, TimeBase
and the inheriting nodes Animation and TimeContainer. Figure 5
shows the inheritance diagram for all nodes of the Animation
collection.

Animation
{abstract}

AnimateTranslation

AnimateCoordinate

AnimateColor

AnimateScalar

AnimateRotation

AnimateNormal

TimeSensor

ScalarInterpolator

CoordinateInterpolator

NormalInterpolator

OrientationInterpolator

ColorInterpolator

PositionInterpolator

TimeBase
{abstract}

TimeContainer
{abstract}

ParallelSequential

Figure 5. Inheritance diagram of the Animation collection

Arrows indicate node inheritance, diamonds node composition.
One can notice the usage of X3D interpolator nodes and the X3D
TimeSensor node as parts of the new nodes.
Six instantiable nodes are inheriting from abstract node
Animation: AnimateTranslation, AnimateRotation, AnimateColor,
AnimateScalar, AnimateCoordinate, and AnimateNormal. The
behavior node AnimateTranslation shall be described as a
representative example here. Its interface is shown in Table 2.

Table 2. Interface of Node AnimateTranslation1

 Field Name Data Type Default
► enabled Boolean true ►
► startTime Time 0.0 ►
 begin Time 0.0
► stopTime Time 1.0 ►
 end Time 0.0
 duration Time 0.0
► cycleInterval Time 1.0 ►
► loop Boolean false ►
 cycleCount Float 0.0
 cycleTime Time ►
 active Boolean ►
 accumulate Boolean false
 calcMode String linear
 keySplines Strings []
► key Floats [] ►
► to Vector3FloatArray [] ►
 by Vector3FloatArray []
 out Vector3Float ►

The upper fields are inherited from TimeBase. A node-internal
time was introduced in addition to the global system time. With
the fields begin, end, and duration one can assign, when an
animation starts, ends and how long it lasts after the node was
activated. The following XML fragment shows a possible
application of these fields.
<AnimateTranslation begin="3.0" end="8.0" cycleInterval="10"
 key="0.0, 0.5, 0.99" to="-1 1 0, 0 0 0, 1 -1 0"/>

This simple animation starts 3 seconds after the startTime event
was received. It ends after 5 seconds. As a consequence the
animation cycle with its duration specified by cycleInterval is
only half done when the animation stops. The next example
illustrates an animation starting 3 seconds after receiving the
startTime event and lasting for 3 seconds as specified in the
duration field.
<AnimateTranslation begin="3.0" duration="3.0" cycleInterval="10"
 key="0.0, 0.5, 0.99" to="-1 1 0, 0 0 0, 1 -1 0"/>

The fields to and by are possible ways to define key values as
absolute or relative delta vectors. According to the general time
settings AnimateTranslation generates Vector3Float events with
the out field, which are typically routed to a Transform node to
animate the position of all subsequent nodes.

1 The tables read as follows: Arrows on the left depict fields

receiving, arrows on the right generating events. Fields with a
given default value implicate change mode configurable = true.
The thick lines separate fields inherited from different nodes;
fields added by the youngest node are shown at the bottom.

The following definition of an AnimateScalar node illustrates
another feature of all nodes derived from Animation. Intervals can
be used to cycle through simple animations and even accumulate
their results.
<AnimateScalar cycleInterval="5.0" cycleCount="3.0"
 accumulate="true" key="0.0, 0.5, 0.99" by="10, 5"/>
The single animation lasts 5 seconds and will be repeated three
times. Since values are accumulated with accumulate set to true,
the following results will be generated: starting with 0, after 2.5
seconds 10, then 5 at the end of the first cycle. The initial value
used for the next iteration is 5 (not 0). At the end of the second
cycle 10 is generated, after the third cycle it is 15. All nodes
inheriting from Animation also possess the field calcMode. This
field defines the interpolation mode for values at key points.
Possible values are discrete, linear, paced, and spline. Their
meaning equals the definitions of the SMIL Animation Modules.
Two instantiable nodes are derived from abstract node
TimeContainer within the Animation collection: Sequential and
Parallel (see Figure 5). They are grouping and synchronization
nodes supporting behavior definitions of level 2 according to
[Roehl 1995]. All animations contained in a Parallel node will be
started at the same time respectively executed in parallel. The
Sequential node activates all contained actions in sequence, which
is illustrated by the following example.
<Sequential begin="1.0" cycleInterval="5.0">
 <AnimateTranslation key="0 1" to="0 0 0, 0 0.05 0"
 cycleInterval="2.0"/>
 <AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.5"
 cycleInterval="3.0"/>
</Sequential>
Nodes AnimateTranslation and AnimateRotation are grouped and
executed after each other. Attribute begin of the Sequential node
indicates a start of the first animation 1 second after having
received the startTime event. After 2 seconds AnimateTranslation
is finished and AnimateRotation is started. In addition to the fields
inherited from its parent nodes, Sequential defines a new field
nextAnimation, which can only receive events. When set to the
Boolean value true, the current animation is stopped and the next
animation started as defined in the sequence.

4.4.2 State Machine
This behavior node collection serves the intuitive description of
behavior and interaction with connectable state machines. The
concept developed in Viewpoint [Viewpoint] served as a basis for
these nodes. According to [Roehl 1995] behavior definitions of
level 3 can be expressed with the State Machine collection. Figure
6 depicts the inheritance diagram for the nodes of this collection.

SequentialStateMachine

BaseStateMachine
{abstract}

StateMachine
Figure 6. Inheritance diagram of the State Machine collection

The node SequentialStateMachine allows the realization of a state
machine running sequentially through its states. The second node
inheriting from the abstract BaseStateMachine is StateMachine.
With this node flexible state machines can be modeled through
explicitly specifying arbitrary states and state transitions. Table 3
shows the interface of this node.

Table 3. Interface of Node StateMachine

 Field Name Data Type Default
 stateCount Integer 1
 currentState Integer 1 ►
 transitions Strings []

The currentState field inherited from BaseStateMachine was
defined with the following change modes: configurable="true"
receivesEvents="false" generatesEvents="true". That means, an
initial state can be set, but at runtime currentState is just changed
by the internal state transitions. This is an example for a field
access type not directly expressible with X3D and illustrates the
advantages of the field concept explained in section 4.1.1.
The important field added by StateMachine is transitions. Every
state transition within this list of stateCount transitions will be
specified with a value quadruple. The following XML fragment
shows an example with 3 defined states as indicated with the
attribute stateCount.
<StateMachine stateCount="3" transitions="
 1 2 LCD_Sensor.touchTime OpenLaptop.startTime,
 2 1 LCD_Sensor.touchTime CloseLaptop.startTime,
 2 3 Keyboard_Sensor.touchTime OpenKeyboard.startTime,
 3 2 Keyboard_Sensor.touchTime CloseKeyboard.startTime"/>

Since states are represented as integer values, the first entries of
the quadruple declare the start and end state of a specific
transition as integers. The third value indicates the behavior or
interaction, which actually triggers the state transition. The last
value holds the behavior to be triggered as a result of the state
transition. Both values are references to already defined behavior
nodes using their DEF attribute. The substring after a dot
indicates the field of a specified node, which must be of type time.

5. Integration and Implementation
In the previous chapters the basic BEHAVIOR3D concept and its
realization with XML Schema were introduced. Though
BEHAVIOR3D was inspired by X3D, it is an independent behavior
language. However, behavior declarations can be translated to
X3D documents in order to be actually run in an appropriate 3D
viewer. This chapter explains the realization with X3D, sketches
the successful integration into the project CONTIGRA and
demonstrates an interactive application example.

5.1 Implementation with X3D
Beside the XML interface document of a behavior node there
exist two partly automatically generated Java files for each node.
Java was chosen as the implementation language instead of
JavaScript to make use of its object-oriented and other language
features. Moreover, projects in the context of X3D, such as the
XJ3D player [XJ3D], are also being developed in Java and form a
possible basis for future integration. Our current implementation
is based on the Java platform scripting reference of the VRML97
standard, since the X3D SAI-implementation is not available yet.
Take for example a new behavior node called ExampleNode. Its
interface is declared in ExampleNode.xml. With the help of XSLT
stylesheets all implementation documents are automatically
generated. Figure 7 depicts the transformation process from this
Behavior3DNode instance document to the corresponding Java
and X3D documents.

With the stylesheet NodeTemplate.xslt the Java class
ExampleNodeTemplate.java will be generated. This class contains
access methods for the fields of a node and corresponding
attributes, which are automatically initialized. For every field with
change mode receivesEvents=true methods will be generated for
receiving events. All other initializations, such as the processing
of field mappings to used nodes, are also generated.
The ExampleNodeTemplate.java class inherits from the behavior
class specified in the attribute extends of the node interface
declaration. This way the emerging Java class hierarchy exactly
represents the declared behavior node hierarchy. The base class
for all behavior nodes is BaseNode.java, so that all template
classes will indirectly inherit from it. This class takes care for
correct initialization of nodes, general event handling using Java
reflection, as well as managing debugging information. It is itself
derived from class Script.java of the VRML97 Java platform
scripting reference.

 NodeTemplate.xslt

Instance Document
ExampleNode.xml

ExampleNodeTemplate.java

ExampleNode.java

Java Implementation

Node.xslt

X3DPrototype.xslt

XML Schema
Behavior3DNode

co
nf

or
m

s t
o

Script.java

...

BaseNode.java

Script Node

X3D Prototype
ExampleNode.x3d re

fe
rs

 to

extends

extends

Figure 7. Transformation process for a BEHAVIOR3D node

With the stylesheet Node.xslt the Java class ExampleNode.java
will be generated, extending the parent class ExampleNode
Template.java. As opposed to its parent class, which should not
be changed at all, this class only supplies an initial code frame,
where custom code needs to be added to realize the actual
behavior. Event processing methods inherited from the parent
class can also be extended. Both automatically generated Java
classes considerably facilitate the implementation of functionality
and reduce programmer�s work.
Since an X3D scene graph cannot use node definitions of the
proposed XML Behavior3D grammar and the associated Java
classes per se, an X3D wrapping becomes necessary. The lower
part of figure 7 shows the translation of ExampleNode.xml to an
X3D prototype node with the stylesheet X3DPrototype.xslt. The
generated prototype basically declares its fields corresponding to
the node interface. It also contains an X3D script node, which
itself references the Java class ExampleNode.java described
above. Within the script node�s interface three fields are
generated for every field declared in ExampleNode.xml, i.e.
fieldName, set_fieldName, and fieldName_changed. This allows
the easier mapping of BEHAVIOR3D change modes and provides
more implementation flexibility. The automatically generated

X3D behavior prototype can be used in arbitrary X3D scene
graphs. It is to be mentioned, that once the Scene Authoring
Interface (SAI) will be available, it will significantly reduce the
complex translations described in this section. However, it could
be shown, that BEHAVIOR3D can be easily implemented on the
basis of X3D and delivers functioning results.

5.2 Integration into Contigra
As already mentioned earlier, the BEHAVIOR3D approach was
developed as part of the CONTIGRA project [Dachselt et al. 2002,
Contigra]. Within that project a 3D component is declaratively
described in two separated XML documents, containing its
interface declaration and implementation. Components might
contain subcomponents, arranged in a component graph as a
method of composition. In addition to that a component usually
consists of various scene graph parts, particularly in the case of a
single component without sub-components. In this section the
focus is laid on the SceneGraph part. Figure 8 depicts this section
of the implementation grammar�s structure. The basic diagram
symbols are explained in section 4.2.1. A switch indicates a
choice of elements.
One can observe a strict separation of the three different scene
graph hierarchies Geometry, Audio, and Behavior. As opposed to
many 3D scene graph technologies, with CONTIGRA a clear
separation of these graphs is enforced for the reason of better
reusability, easier maintainability, exchangeability, and clarity. A
component�s behavior graph is a transformation hierarchy
consisting of behavior nodes made available through the included,
automatically generated grammar Behavior3D as described in
section 4.3. That means behavior nodes such as Sequential,
StateMachine, AnimateTranslation etc. can be directly used
within the implementation document of a 3D component.
As a consequence of the SubSceneGraphs division, the separated
link section SceneGraphLinks will become necessary to actually
connect related nodes of these graphs. In order to use more
powerful node and field connections than possible with single
event-based ROUTE-statements, an extended link concept was
developed, where links convey a specific semantics and form n:m
relations.
CONTIGRA components can be translated to various 3D formats.
Due to the close orientation towards X3D it was natural to first
develop a translator to that format. As a proof of concept

components with all their sub-components and sub scene graphs
can be translated to valid X3D/VRML97 documents using again
XSLT stylesheets. In this process the X3D prototypes and Java
classes generated for each behavior node are employed.

5.3 Application Example: Interactive Laptop
To illustrate the practical application of the BEHAVIOR3D concept
one of the created examples will be introduced in this section. By
touching its lid a laptop shall be opened. After touching the
keyboard it should fold up. Both actions should be invertible. It is
forbidden to close the laptop while the keyboard is folded up. The
geometry of a laptop2 consisting of three parts was the basis for
the behavior description of this scenario. The whole laptop was
realized as a CONTIGRA component. The following XML code
shows the complete behavior description in terms of the behavior
graph. In addition to that, scene graph links are necessary to
connect behavior to geometry nodes. They are left out here, since
they are straightforward and not a direct part of the behavior
concept.
<TouchSensor DEF="LCD_Sensor"/>
<TouchSensor DEF="Keyboard_Sensor"/>

<StateMachine stateCount="3" transitions="
 1 2 LCD_Sensor.touchTime OpenLaptop.startTime,
 2 1 LCD_Sensor.touchTime CloseLaptop.startTime,
 2 3 Keyboard_Sensor.touchTime OpenKeyboard.startTime,
 3 2 Keyboard_Sensor.touchTime CloseKeyboard.startTime"/>

<AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.7"
 cycleInterval="2" DEF="Openlaptop "/>
<AnimateRotation key="0 1" to="1 0 0 -1.7, 1 0 0 0"
 cycleInterval="2" DEF="CloseLaptop"/>

<Sequential DEF="OpenKeyboard">
 <AnimateTranslation key="0 1" to="0 0 0, 0 0.05 0"
 cycleInterval="1" />
 <AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.5"
 cycleInterval="1" />
</Sequential>
<Sequential DEF="CloseKeyboard">
 <AnimateRotation key="0 1" to="1 0 0 -1.5, 1 0 0 0"
 cycleInterval="1" />
 <AnimateTranslation key="0 1" to="0 0.05 0, 0 0 0"
 cycleInterval="1" />
</Sequential>

2 Laptop courtesy of Richard Choi (http://www.web3d.co.kr)

Figure 8. Part of the XML Schema hierarchy for component implementations

First of all two TouchSensors are defined, which are associated
with the LCD and keyboard geometry of the laptop. This
association is usually established in X3D through the insertion of
sensors into the appropriate scene graph part. With this concept
they are separately defined and inserted later during the
translation process with the help of a link statement to the
geometry graph.
Afterwards one can notice the modeling of the three states, which
are visualized in Figure 9. The laptop can be closed, opened, and
opened with the keyboard folded up. State transitions are declared
with associated triggers and resulting behavior.

Figure 9. The three states of an interactive laptop

With the help of two AnimateRotation nodes the opening and
closing of the laptop is realized as a smooth animation. It is
sketched in Figure 10 on the left. The two Sequential nodes are
slightly more complex, since the keyboard is first translated
upwards before it is rotated to the back. Folding it down
represents the inverse operation. Figure 10 on the right visualizes
this animation.

Figure 10. Two animations of the laptop example

6. Discussion and Future Work
In this paper a flexible concept for declaratively modeling 3D
object behaviors was introduced. The good potential of X3D and
its limitations for declarative behavior definitions were analyzed.
Though the BEHAVIOR3D node concept resembles the X3D node
model, node inheritance and an improved field concept were
added. X3D nodes, parts of the prototype concept and VRML++
were combined to form a coherent concept with object-oriented
features for behavior graphs, i.e. inheritance, strong typing, and
polymorphism. This results in a considerable increase of node
reusability and maintainability.
To be format-independent a new XML-based definition of node
interfaces was developed according to the node concept.
Implementation templates can be automatically generated from
these Behavior3DNode instance documents, where custom code
additions are reduced to a minimum. The generated classes could
also be written in C++ instead of Java. Since the declarative
behavior graph is neither dependent on X3D nor CONTIGRA, it
could be translated to other 3D technologies, too. However, a
technical orientation towards the future Web3D standard naturally
implicates best translation results, which are not guaranteed with
other technologies.

We also proposed a rich set of predefined behavior nodes
categorized in comprehensive collections employing inheritance.
Through the consideration of all behavior related X3D nodes a
full backward compatibility was achieved. In addition to that the
node repertoire was considerably expanded, especially for
animation and state machine behavior. Our notion of node
collections easily translates to X3D components. In fact, the
introduced collections can also be seen as a proposal for new X3D
behavior components.
The repertoire of behavior nodes can be made available in an
automated fashion through the novel dynamic grammar
generation. This way both built-in and new nodes can be
syntactically used as first class language elements. The idea of
automatically generating a dynamic scene graph grammar could
be applied to other X3D extensions as well. Thus the
homogeneous usage of all nodes would syntactically improve
X3D documents. The proposed concepts are not limited to
behavior nodes alone. Node inheritance, improved field access
types, automated implementation class generation, and dynamic
language extensions could be used as a framework for developing
new X3D nodes in general. We hope to stimulate a discussion of
these issues with our work.
It was further shown that the suggested behavior definitions are
transformable to actual X3D scenes. BEHAVIOR3D was
successfully integrated into the CONTIGRA project through
defining a separate behavior graph. This demonstrates the
practicability of our approach for developing 3D applications. An
important limitation of the approach must not be unmentioned.
Behavior, interactions, and functionality always need to be
implemented imperatively at some point. Elegant declarative
modeling of behavior must be paid for with more programming
�in the back�. Moreover, declarative node connections tend to
slow down the execution within a 3D player and shift the
responsibility to clever implementations of the player.
As future work more behavior nodes should be defined and
implemented. The proposed behavior node collections need to be
extended and harmonized with existing X3D components. A
visual authoring tool for editing behavior will be built to further
ease the creation of interactive scenes for non-experts. Finally, it
should be interesting to discuss and to investigate more closely,
how the introduced ideas can be integrated into X3D.

7. References
ALTHOFF, F.; STOCKER, H.; MCGLAUN, G.; LANG, M. 2002. A
Generic Approach for Interfacing VRML Browsers to Various
Input Devices and Creating Customizable 3D Applications. In
Proceeding of the 7th International Conference on 3D Web
Technology (Web3D 2002), Tempe, Arizona, USA, pp. 67-74.
CODOGNET, P.; RICHARD, N. 1998. Multi-way constraints for
describing high-level object behaviours in VRML. In Proceedings
of the Interaction Agents workshop at the AVI'98 conference,
L'Aquila, Italy.
CONTIGRA Project web pages
http://www.contigra.com
Cult3D Designer
http://www.cult3d.com/Cult3D/designer.asp

DACHSELT, R.; HINZ, M.; MEIßNER, K. 2002. CONTIGRA: An
XML-Based Architecture for Component-Oriented 3D
Applications. In Proceeding of the 7th International Conference
on 3D Web Technology (Web3D 2002), Tempe, Arizona, USA,
pp. 155-163.
DIEHL, S. 1997. VRML++: A Language for Object-Oriented
Virtual-Reality Models. In Proceedings of the 24th International
Conference on Technology of Object-Oriented Languages and
Systems (TOOLS), Bejing, Asia.
DIEHL, S.; KELLER, J. 2000. VRML with Constraints. In
Proceedings of the Web3D-VRML 2000 fifth symposium on
Virtual reality modeling language, Monterey, California, USA,
pp. 81-86.
DÖLLNER, J.; HINRICHS, K. 1998. Interactive, Animated 3D
Widgets. In IEEE Proceedings of Computer Graphics
International '98, Hannover, Germany, pp. 278-286.
FIGUEROA, P.; GREEN, M.; HOOVER, H. 2002. InTml: A
Description Language for VR Applications. In Proceeding of the
7th International Conference on 3D Web Technology (Web3D
2002), Tempe, Arizona, USA, pp. 53-58.
KEMKES, A. 2001. X3D and SMIL.
http://www.web3d.org/TaskGroups/x3d/perceptronics
KSHIRSAGAR, S.; MAGNENAT-THALMANN, N.; GUYE-VUILLÈME,
A.; THALMANN, D.; KAMYAB, K.; MAMDANI, E. 2002. Avatar
Markup Language. In Proceedings of the workshop on Virtual
environments (EGVE) 2002, Barcelona, Spain, pp. 169-177.
MPEG-4: Binary Format for Scenes (BIFS)
http://mpeg.telecomitalialab.com/standards/mpeg-4/
mpeg-4.htm#10.6
ROEHL, B. 1995. Some Thoughts on Behavior in VR Systems.
http://ece.uwaterloo.ca/~broehl/behav.html
SAI (Scene Authoring Interface / Scene Access Interface)
http://www.web3d.org/TaskGroups/x3d/sai/
SceneAccessInterface.html

SEIDMAN, G. 1998. Cooking With Hotpot: Making Events In
VRML Work For You.
http://www.cs.brown.edu/~gss/VRML98/paper.rev.html
SMIL 2.0 (Synchronized Multimedia Integration Language):
W3C Recommendation 07 August 2001
http://www.w3.org/TR/smil20/
Viewpoint
http://www.viewpoint.com
Virtools Dev
http://www.virtools.com/solutions/products/virtools_dev.asp
VRML97. 1997. The VRML Consortium Inc.: �The Virtual
Reality Modeling Language � International Standard ISO/IEC
14772-1:1997�,
http://www.web3d.org/technicalinfo/specifications/
vrml97/index.htm
VRML 2.0 PROTO Library
http://www.accad.ohio-state.edu/~pgerstma/protolib/protolib/
VRML Object-Oriented Extensions Working Group
http://rw4.cs.uni-sb.de/~diehl/ooevrml/
X3D-Schema, Version 0.8 (June 2002)
http://www.web3d.org/TaskGroups/x3d/translation/
X3dSchemaDraftSpy.xsd
X3D Specification: M4 - Final Working Draft
http://www.web3d.org/TaskGroups/x3d/
specification-milestone4/
Xj3D Open Source VRML/X3D Toolkit
http://www.xj3d.org
XML Schema
http://www.w3.org/XML/Schema
XSL (Extensible Stylesheet Language)
http://www.w3.org/Style/XSL/

