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Abstract 
Success of 3D applications on the Web inherently depends on 
object behavior and interaction. Current Web3D formats often fall 
short in supporting behavior modeling. This paper introduces a 
flexible concept for declaratively modeling 3D object behaviors. 
Based on Extensible 3D (X3D) a node concept is suggested with 
object-oriented features such as inheritance, strong typing, and 
polymorphism. An XML-based language Behavior3DNode serves 
the interface definition of new nodes. Their implementation is 
simplified by automated code generation. A novel grammar 
generation mechanism collects all existing nodes in a dynamic 
XML Schema. Thus new behavior nodes can be used along with 
built-in nodes as first class scene graph elements. A rich set of 
predefined behaviors is proposed, among them Animation and 
State Machine node collections. The concepts were successfully 
implemented with VRML97/X3D and integrated into a 3D 
component approach. 

Categories and Subject Descriptors 
H.5.1 [Information Interfaces and Presentation]: Multimedia 
Information Systems � Animations. I.3 [Computer Graphics]: 
I.3.6 Methodology and Techniques � languages, standards. I.3.7 
Three-Dimensional Graphics and Realism � animation, virtual 
reality. D.2.11 [Software Engineering]: Software Architectures � 
domain-specific architectures, declarative languages. 

General Terms 
Design, Standardization, Languages. 

Keywords 
Animation, Behavior Language, Object Behaviors, Dynamic 
Grammar, XML-Schema, Extensible 3D (X3D), SMIL, Contigra 

1. Introduction 
The availability of 3D technologies on consumer platforms is 
continuously growing. This is a result of permanent improve-
ments in 3D accelerated graphics hardware and enhancements of 
3D software systems. The widespread usage of Internet 
technologies and the development of a multitude of proprietary 
Web-based 3D formats consequently resulted in an increasing 
number of 3D-enhanced Web applications. Though promising 

results already exist in domains such as electronic commerce, 
computer assisted learning, sports, avatars, or entertainment, only 
few success stories about 3D graphics on the World Wide Web 
can be told. Success and further progress in this field inherently 
depends on compelling 3D content. It should be a media rich and 
highly interactive content to actually drive enabling applications. 
As far as object geometry and media assets are concerned, a 
variety of excellent modeling and authoring tools and format 
converters already exist. There are various interesting proprietary 
Web3D technologies and associated authoring tools to produce 
such media-rich 3D content. However, most of them are tailored 
to specific application domains and limited in producing really 
interactive and dynamic 3D scenes. 
Proprietary solutions offer some convincing functionality to 
author specific behaviors such as animations or simple object 
interactions. However, they fall short in providing additional 
behavior types. Among the interesting solutions are tools such as 
Virtools Dev [Virtools Dev] and Cult3D Designer [Cult3D]. 
Developers face the disadvantage, that the underlying formats are 
mostly not disclosed. Therefore necessary behavior extensions are 
not easy to accomplish, if possible at all. Script languages are 
basically the only way to achieve application-specific complex 
behaviors. VRML97 [VRML97] as the standard for 3D graphics 
on the Web and its successor Extensible 3D (X3D) [X3D 
Specification] offer more flexibility through built-in behavior-
related nodes, script nodes, and extensibility mechanisms. 
However, creating complex object behaviors and reusing them in 
other projects is far from being a simple task. Although 
sophisticated solutions exist for producing and especially reusing 
dynamic web pages and other media content, projects with 
interactive 3D graphics are often developed from scratch. They 
mostly demand programming skills or at least knowledge of 
scripting languages. Therefore it excludes non-programmers from 
designing 3D applications, which remains a tedious work. 
This problem cannot be attributed to the authoring process alone, 
but initially depends on the capabilities of the underlying 3D 
formats. They usually employ scene graphs and focus on 
geometry, appearance, and simple dynamic behavior. With 
respect to complex behaviors and reuse of behavior building 
blocks they often fall short. Taking the mentioned problems into 
account we conceive our vision of an extensible, flexible and 
unifying description format for behaviors and interactions. It 
should be an open format, relate to standards, and it should simply 
integrate into existing 3D technologies. A rich set of predefined 
and classified behavior modules should be available. To reduce 
programming for non-expert users we propose a declarative 
format, thus being a reasonable basis for authoring tools. 
The work presented in this paper is part of the research project 
CONTIGRA (Component OrieNted Three-dimensional Interactive 
GRaphical Applications) [Dachselt et al. 2002]. A declarative 

 

 
 



component architecture based on X3D [X3D Specification] was 
designed for the easy construction of Web-enabled, desktop 
Virtual Reality applications and 3D scenes. The document-
centered approach is founded on XML Schema [XML Schema] 
languages describing the interface and implementation of 3D 
components as well as their configuration, assembly, and linking. 
A component implementation consists of three independent scene 
graphs containing geometry, audio, and behavior information. A 
separated link section connects their relevant nodes. The 
BEHAVIOR3D approach introduced here facilitates the construction 
of a component�s behavior graph. The focus of this work lies on 
the behavior language itself as a basis for future authoring tools. 
This paper is organized as follows. The next section relates our 
work to existing approaches. This is followed by a critical 
investigation of X3D behavior concepts and a definition of 
deduced requirements. The main part introduces BEHAVIOR3D 
with its node concept, new markup languages, and behavior node 
collections. Thereafter section 5 describes one possible 
implementation of BEHAVIOR3D with X3D, the integration into 
the CONTIGRA project, and an interactive 3D example. The paper 
is finished by a discussion particularly examining implications of 
the concept for X3D and an outline of future work. 

2. Related Work 
Powerful 3D graphics APIs such as Open Inventor and Java3D 
exist for imperative modeling of 3D object behaviors. Although 
almost any task can be accomplished with such 3D class libraries, 
programmer�s knowledge is inevitable. Instead, declarative 
modeling of behavior will be the focus of this work. 

The term behavior throughout this paper refers to Roehl�s 
definition, where four levels of behavior are distinguished: direct 
modification of an entity's attributes defines level 0; the change of 
an entity's attributes over time constitutes level 1; level 2 
comprises a series of calls to level 1 behaviors to perform some 
task; level 3 after all is characterized as top-level decision-making 
[Roehl 1995]. All levels should be well supported by a behavior 
language. The separation of graphs within the CONTIGRA project is 
based on the idea of an independent behavior graph developed in 
[Döllner and Hinrichs 1998]. It allows both the geometry-
independent modeling of behaviors and their easy adaptation and 
exchange. Since many relationships are more of a temporal than a 
spatial nature, mixing of geometry and behavior into one single 
graph will only scarcely be indicated. It has to be mentioned, that 
the term behavior graph was derived from the term scene graph, 
though behavior graphs can often be represented in simple or even 
flat hierarchies. 

Various declarative Web3D formats were analyzed for this work. 
The standardized VRML97 [VRML97] scene graph contains 
various nodes � which might generate and receive events � and a 
routing mechanism to propagate scene changes. Beside writing 
node and route statements, authors can employ script nodes to 
realize almost arbitrary functionality. To achieve reusability of 
sub graphs, a set of nodes can be encapsulated with the prototype 
concept. A few behavior extensions were already proposed to 
VRML97, such as WaveInterpolator and RolloverSensor [VRML 
2.0 PROTO], as well as prototypes for event manipulation, 
arithmetic, Boolean logic, and event filters [Seidman 1998]. 
Proposals of the VRML Object-Oriented Extensions Working 
Group [VRML Object-Oriented] for object-oriented VRML 

extensions influenced this work. VRML++, developed by [Diehl 
1997], was thereby of special interest. A new class concept 
including abstract classes was proposed along with this object-
oriented approach. However, the disadvantage of a third concept 
beside built-in nodes and prototypes has to be noticed. 
Inheritance, an improved type concept, and polymorphism greatly 
enhanced VRML reusability, runtime stability, and 
maintainability. Unfortunately most of these concepts were not 
yet integrated into the successor X3D.  
With the X3D specification [X3D Specification] a new XML 
encoding and various extensibility concepts were introduced. 
New behavior nodes and groups of nodes, e.g. the Event Utility 
component, were suggested. Some object-oriented concepts were 
introduced with the ongoing development of the X3D XML 
Schema [X3D-Schema] and Scene Authoring Interface (SAI) 
[SAI]. A detailed analysis can be found in the next chapter. 
With its Binary Format for Scenes (BIFS) [MPEG-4] another 
standardized format, MPEG-4, provides a scene graph based 
language comparable to VRML97. Additional nodes allow the 
definition of character faces and bodies along with the declaration 
of their animation. Together with the BIFS animation protocol it 
is a powerful format well suited in particular for character 
animation and 2D/3D composition. The Avatar Markup Language 
[Kshirsagar et al. 2002] is based on XML and MPEG-4 and 
likewise oriented towards avatar animations. 
One of the proprietary formats, Viewpoint [Viewpoint], uses an 
XML-based scene description language containing so called 
Scene Interactors for defining behaviors. The state machine 
paradigm forms the basis of the event handling and influenced a 
part of our work. Actions can be declared, which might be state-
dependent or not. Although they can encapsulate scene behavior 
and can be parameterized, the XML language contains an 
inconsistent mixture of elements and concepts.  
The Synchronized Multimedia Integration Language (SMIL) 2.0 
[SMIL 2.0] is a declarative, XML-based description language for 
interactive, animated multimedia applications on the Web. As 
such it is not tailored to 3D graphics, but offers neat functionality 
with its intuitive time and animation concepts integrating discrete 
and continuous media types. Since SMIL 2.0 became quite 
complex, related elements, attributes, and attribute values were 
grouped into modules and profiles. The animation and timing & 
synchronization modules, particularly the synchronization and 
grouping elements influenced the development of BEHAVIOR3D. 
The work of [Kemkes 2001] already sketches a possible 
integration of SMIL concepts into X3D and was considered here 
too. 
Other behavior-related work includes research on the integration 
of various input devices and their mapping to scene behavior 
[Althoff et al. 2002, Figueroa et al. 2002]. It was not integrated 
into BEHAVIOR3D yet. Research on constraints, e.g. by [Diehl and 
Keller 2000] and [Codognet and Richard 1998], was considered 
for further language extensions and new behavior collections. 
Surveying related work one can observe, that various declarative 
languages exist for defining Web3D behaviors. They are partly 
XML-based and offer various interesting concepts. Some formats 
are specialized for behavior declarations in specific domains  
(e.g. character animation). There is no single format integrating 
every behavior concept and offering coherent extensibility 
mechanisms. 



3. Defining Behavior in X3D �  
Prospects and Shortcomings  

3.1 Format Requirements and Choice of X3D 
As the basis of this work a number of general requirements was 
made for a powerful behavior definition concept. The format 
should be declarative, thus being easy to read and use even for 
non-experts. Moreover, it should serve as an exchange format for 
behavior definitions independent from specific 3D technologies 
and form the basis for authoring tools. It is desirable to separate 
the behavior graph from other scene definitions with the objective 
of readability, maintainability, and reusability. A rich and 
extensible set of behavior modules must be available. That 
suggests a modular concept based on object-oriented principles. 
Nodes must be ordered in appropriate hierarchies employing 
inheritance. Another important goal for developing an expressive 
3D behavior concept is the usage of standard formats where 
possible or at least to interoperate with them. That is one of the 
reasons why VRML97 / X3D was considered as a suitable basis 
for this work. It is a powerful and general-purpose format 
fulfilling some of the mentioned requirements and providing 
various extensibility mechanisms. 
However, why is it not favorable to simply use these mechanisms 
and create additional behavior nodes with X3D? This chapter 
attempts to answer this question by looking closer at the X3D 
capabilities for defining behavior and adding new functionality. In 
conjunction with this analysis further requirements are defined for 
an improved behavior concept related to X3D. 

3.2 Using Built-In Behavior Nodes 
X3D offers various built-in nodes for defining simple object 
animations and interactions according to behavior levels 0 and 1 
as defined in [Roehl 1995]. Among them are nodes such as time, 
sensors, interpolators, triggers, and sequencers. X3D nodes are 
divided into so-called Components, whereas this term refers to 
functionally related X3D objects, typically node collections. The 
behavior nodes are arranged in the components Environmental 
Sensor, Key device sensor, Pointing Device Sensor, Interpolation, 
Event Utilities, and Time. There are many recurring application 
scenarios, where these pre-defined nodes are not sufficient, 
particularly for complex animations or state-based modeling of 
3D scenes. That means authors have to use the Script node 
described in section 3.3 to realize even common 3D functionality.  
With the ongoing development of the X3D XML Schema [X3D-
Schema] and the Scene Authoring Interface (SAI) [SAI] existing 
nodes are arranged in a node hierarchy. These steps towards node 
classification, stronger typing, and node inheritance facilitate both 
the usage of nodes and their implementation. Inheritance should 
be applied consequently, so that newly defined nodes profit from 
their derivation from existing nodes. Figure 1 depicts a part of the 
already proposed hierarchy and the X3D behavior components. 
The behavior node hierarchy needs to be extended. All existing, 
built-in X3D nodes should be included in the new behavior 
concept due to adoption of good concepts and backward 
compatibility. 
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Figure 1. Part of the X3D SAI node hierarchy and  

grouping of nodes within X3D components 

3.3 Adding Behavior via Script Nodes 
The Script node allows authors to write arbitrary event processing 
code and perform computations within a 3D scene. It can be seen 
as a link between the declarative world of nodes and imperative 
programming. The need for integrating complex, previously not 
existing behavior via some sort of programming is evident for any 
non-trivial 3D application. However, the script node should not be 
needed to code common functionality again and again.  
Script nodes have a number of disadvantages. They do not 
integrate into the object hierarchy and rather constitute an 
independent concept. Programmers would like to use inheritance 
for script nodes too. Reusability of scripts is not well supported; it 
can only be accomplished by wrapping them in prototypes. 
Debugging of script languages (e.g. JavaScript) is difficult and 
time-consuming in script nodes. Field definitions in script nodes 
do not allow safe typing. Assuming a field referencing a node, 
authors can only specify data types Node or Nodes, not the 
particular node types, e.g. InterpolationNode or node types 
derived from it. There is the clear need for polymorphism and 
strong typing. Another known problem with fields in VRML97 
scripts is the prohibition of access type exposedField in field 
declarations. This problem was not completely eliminated in X3D 
yet. There should be a unique handling of access types throughout 
the format. A last problem to be mentioned is the confusing 
mixture of general scene nodes, behavior related nodes, script 
nodes, and ROUTE statements within a document. Parts should 
be clearly separated for improved maintenance and readability. 



3.4 Creating new X3D Nodes with Prototypes 
Using the prototype concept new nodes can be defined in terms of 
sub graphs of already existing nodes. The X3D specification 
[X3D Specification] states, that once defined they can be 
instantiated like built-in nodes. However, this is not entirely true, 
particularly not for the current X3D XML encoding. Assuming a 
prototype being defined in a separate document, an author would 
first need to use an Externproto definition before actually using 
the new node. In the X3D VRML97 encoding this looks like: 
EXTERNPROTO AnimateRotation [ 
 field  MFFloat  key 
 field  MFRotation  to 
 � 
] ["File.wrl"] 
� 
AnimateRotation { 
 key  [ 0 1 ] 
 to  [ 1 0 0 -1.7, 1 0 0 0 ] 
} 
In XML syntax the new node really becomes a second-class node, 
since it has always to be wrapped within a ProtoInstance element 
as shown in the following document fragment. 
<ExternProtoDeclare name="AnimateRotation" url="File.x3d"> 
 <field accessType="field" name="key" type="Floats"/> 
 <field accessType="field" name="to" type="Rotations"/> 
 � 
</ExternProtoDeclare> 
� 
<ProtoInstance name="AnimateRotation"> 
 <fieldValue name="key" value="0 1"/> 
 <fieldValue name="to" value="1 0 0 -1.7, 1 0 0 0"/> 
</ProtoInstance> 
Instead of writing a ProtoInstance statement, the direct usage of 
the new node via its name would be desirable. Another 
disadvantage of both encodings is the lengthy repetition of the 
Externproto field interface before actually using it in the scene. 
As a consequence new behavior definitions should be liberated 
from the burden of out-dated VRML concepts and their associated 
syntax. 
As with script nodes, another disadvantage of prototypes is again 
the missing integration into the X3D XML Schema or SAI object 
hierarchy. It is yet another concept within X3D and does not 

homogeneously integrate with nodes and scripts. Moreover, 
object-oriented features, such as inheritance, polymorphism, a 
safe type concept etc. would be desirable. They should seamlessly 
integrate into X3D and do not form an additional concept. 
Authors shall be able to create new behavior nodes and integrate 
them into the existing hierarchy. While using a new node in an 
X3D document, users should not need to reflect, whether this 
node is built-in, a script node or some other node extension. All 
nodes should be first class nodes and require the same 
homogeneous syntax. 

4. Behavior3D 
After having looked at related work and the behavior and 
extensibility mechanisms of X3D, this chapter introduces the 
novel BEHAVIOR3D concept in detail. Figure 2 illustrates the two 
levels behavior node development and usage with all associated 
grammars and instance documents. Thus it serves as an overview 
of the whole BEHAVIOR3D concept. First of all the general node 
concept for defining behavior is explained in section 4.1. In the 
following section a new XML Schema grammar Behavior3DNode 
is introduced for describing such behavior nodes at the node 
development level. Once these nodes are defined, it should be 
easily possible to use them as first class nodes in a behavior 
graph. For that purpose another grammar, Behavior3D, was 
designed for the node usage level. It is an automatically generated 
XML Schema integrating all available behavior nodes, thus 
providing a repertoire of behavior definitions. This grammar is 
described in section 4.3. The concept of behavior node collections 
will be introduced afterwards. In Figure 2 they are sketched at the 
development level. Collections constitute reasonable behavior 
modules comparable to X3D components. After all the actual 
implementation of behavior nodes is described in chapter 5. 
All grammars and instance documents of BEHAVIOR3D are coded 
with XML. The decision for this hierarchical document definition 
format was made because of its interoperability, easy processing, 
standardized form, widespread use, and general usability. In 
particular XML Schema [XML Schema] was chosen because of 
its partial support of object-oriented features (e.g. substitution 
groups), namespaces, extensibility (e.g. type extensions) as well 
as its improved type concept. 

Figure 2. Overview of the different BEHAVIOR3D levels, grammars, and instance documents 
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4.1 Basic Node Concept 
BEHAVIOR3D comprises a generic object-oriented node concept 
merging built-in nodes, scripts, the prototype concept of X3D, 
and the class concept of VRML++ [Diehl 1997]. Furthermore an 
improved field concept was added. A behavior node is a 
constituting part of the behavior graph and represents certain 
functionality within a 3D application. Every node might possess 
one or many typed fields for defining characteristics of this node.  

4.1.1 Fields 
Every field has a name, a type, a value, three change modes, and a 
possible default value. All X3D field types and all existing 
BEHAVIOR3D nodes can be used as field types. The change modes 
define the access time of a field. Field values can be assigned 
during authoring time (mode configurable), can be changed 
during runtime receiving an event (mode receivesEvents), and can 
generate events after a change of their value (mode 
generatesEvents). The default value of a field can be interpreted 
as an initial value and must be set if configurable equals true, 
otherwise it is not used. Table 1 lists all possible change mode 
combinations of a BEHAVIOR3D field and compares valid value 
triples to X3D field access types. 

Table 1. Change Modes of Behavior3D-Fields 
Combinations  

configurable receives 
Events 

generates 
Events 

corresponds to 
X3D field 
access type 

1 false false false - 
2 false false true eventOut 
3 false true false eventIn 
4 false true true - 
5 true false false field 
6 true false true - 
7 true true false - 
8 true true true exposedField 

 
The comparison of the eight combinations to the X3D field access 
types reveals a richer expressiveness of the proposed change 
modes. The first combination, where no value can be assigned to 
a field at any time, has no practical relevance. However, 
combinations 4, 6, and 7 provide a clear definition for typical 
application scenarios. Setting 4 can be used for a field, which 
cannot be configured but only changed at runtime. This could for 
example be an IP address, which is dynamically assigned during 
runtime. Setting 6 is typically used for some field reflecting a 
current state, number, or item etc. It can be set at configuration 
time, generates events during runtime, but cannot be changed 
directly at runtime. Setting 7 can be conveniently used for values 
initialized at configuration time and changed during runtime. A 
typical example might be a font style field that does not need to 
generate events. 

4.1.2 Inheritance and Composition 
Nodes can inherit from other nodes. Only single inheritance is 
suggested within BEHAVIOR3D to avoid problems of multiple 
inheritance. Node B derived from parent node A inherits all fields 
and the implementation of A, respectively the event handling. 
That means node B possesses at least all fields of A, but could 
add new fields, add new implementation methods, and overwrite 
parent node methods. Nodes can be abstract, which prohibits their 

instantiation. The notion of abstract nodes allows node designers 
to shift shared fields and implementations of different nodes to a 
common abstract parent node. Thus implementation stability will 
be improved because of frequent use in inheriting nodes. Figure 3 
depicts a small portion of the proposed BEHAVIOR3D hierarchy to 
illustrate the concept.  
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Figure 3. Inheritance in BEHAVIOR3D 

The abstract node TimeBase provides the basis for all time- and 
animation-related behavior nodes. Various fields are defined; a 
basic implementation is provided with them. TimeContainer is 
another abstract node inheriting from TimeBase. It adds a new 
field to accommodate other time-related behavior nodes. With 
Sequential the first actually instantiable node is derived from 
TimeContainer. It adds another field, nextAnimation. The user of 
this node will be offered the complete interface including all 
inherited fields as shown on the right. This concept allows the 
creation of new behavior nodes based on already existing nodes. 
Stability and maintainability of code will be improved, 
extensibility is guaranteed.  
Beside inheritance node composition is proposed as another 
method of reusing nodes. Instances of existing nodes can be 
referenced and used inside a newly defined node. Thus their 
functionality is reused, but not their structure and complete set of 
fields as with inheritance. 

4.1.3 Polymorphism and Typing 
Every field in BEHAVIOR3D is typed. In comparison to X3D field 
types can be substituted by all other types inheriting from it. This 
applies in particular to nodes as field types. One specific behavior 
node can be demanded as a type of a field. Polymorphism allows 
all nodes derived from this parent node to be substituted for the 
field both at configuration and runtime. This stronger typing 
concept helps preventing runtime errors while instantiating nodes. 

4.2 Declaration of new Behavior Nodes 
This section introduces the new XML Schema grammar 
Behavior3DNode. It represents the realization of the general node 
concept and allows the description of a behavior node�s interface 



at the development level. Every new node consists of a valid 
instance document of this grammar plus some implementation 
files. The node interface document is used to automatically 
generate the appropriate implementation files as well as the whole 
language repertoire of behavior nodes. 

4.2.1 Behavior3DNode 
Figure 4 depicts an XML Schema diagram of the 
Behavior3DNode grammar. Dashed lines depict optional 
elements. The symbol with squares in a row denotes a sequence 
of elements; the arrow stands for an element reference. A 
behavior node declaration consists of a Header, an Interface, and 
a UsedNodes part. The Header element contains the self-
explanatory attributes name and documentation as well as 
collection. The latter determines this node�s affiliation to behavior 
node collections (see section 4.4). 
The fields particularly define the characteristics of a node. They 
are divided into two groups. The first group Fields contains an 
enumeration of Field elements with non-node data types. These 
are types such as Color, Rotation etc. They represent the actual 
fields of a behavior node, which are later used by setting the 
corresponding XML attributes. The second group ChildNodes 
contains a definition of all possible behavior child nodes, which 
are modeled as field declarations of node data types. These node-
fields later appear in the compact XML syntax as child elements 
instead of attributes. Thus they are comparable to children of a 
grouping node. 
According to the field concept described in section 4.1.1 every 
field contains the attributes name, dataType, default, and 
description. The element ChangeMode contains the three Boolean 
attributes configurable, receivesEvents, and generatesEvents. The 
second element Mapping allows a mapping of this field to an 
already existing field of another referenced BEHAVIOR3D node. 
To continue, the Interface also contains two attributes to realize 
inheritance. Attribute extends allows the specification of a parent 
node from which this node inherits. Attribute nodeType can 
contain the values public or abstract to define, whether it is 
allowed to create instance of this node or not. 
Within the element UsedNodes other behavior nodes can be 
referenced, which are used and needed by this node in terms of 
node composition. The Mapping element establishes the 
connection from fields of the currently defined node to fields of 
the used nodes. The indication of used nodes also helps tools to 
check their availability in terms of interface and implementation 
documents. 

4.2.2 Examples 
The following two examples illustrate, how behavior nodes are 
defined with the previously described grammar. At first the 
declaration of the behavior node TimeContainer is given: 
<Behavior3DNode> 
 <Header name="TimeContainer" collection="Animation"/> 
 <Interface nodeType="abstract" extends="TimeBase"> 
  <ChildNodes> 
   <Field dataType="TimeBase" minOccurs="0" 
     maxOccurs="unbounded" description="The  
     Animations, which should be controlled."> 
    <ChangeMode configurable="true" 
      receivesEvents="false" 
       generatesEvents="false"/> 
   </Field> 
  </ChildNodes> 
 </Interface> 
</Behavior3DNode> 

The attribute collection declares this node to belong to the 
behavior node collection Animation described in section 4.4.1. 
The node is of abstract type, as indicated with the nodeType 
value. A TimeContainer has no declared attribute fields (i.e. the 
Fields part is missing) yet possible ChildNodes. They are defined 
as fields of a complex data type, i.e. of one of the node data types. 
By means of polymorphism non-abstract and also derived nodes 
can be used within instance documents. In this case a 
TimeContainer allows zero to infinite nodes to be used as 
children, which are derived by the abstract node type TimeBase. 
ChangeMode indicates, that child elements can only be added at 
configuration time and must not be changed during runtime. 
In the second example the Sequential node is declared, which 
inherits from TimeContainer as declared with the attribute 
extends.  
<Behavior3DNode> 
 <Header name="Sequential" collection="Animation"/> 
  <Interface nodeType="public" extends="TimeContainer"> 
  <Fields> 
   <Field name="nextAnimation" dataType="Boolean" 
     description="Stops the current animation and starts 
     the next animation"> 
    <ChangeMode configurable="false" 

 receivesEvents="true" generatesEvents="false"/> 
   </Field> 
  </Fields> 
 </Interface> 
</Behavior3DNode> 
In contrast to its abstract parent node this node can be 
instantiated. No child nodes are declared, but one additional field 

 

Figure 4. A diagram of the Behavior3DNode XML Schema 



nextAnimation of Boolean type. It cannot be configured before 
runtime and can only receive events. As a result it stops the 
currently running animation and triggers the next animation 
defined in the sequence of actions within a Sequential node.  
It has to be noticed, that all fields of a basic data type � which are 
defined within the Fields element � will be translated to XML 
attributes of the grammar described in the next section. All node-
typed fields declared within the element ChildNodes (as in 
TimeContainer) will be translated to XML content elements of the 
defined node, i.e. a sequence of elements of the given type. 

4.3 Defining the Behavior3D Node Repertoire 
The behavior nodes defined with Behavior3DNode shall be used 
within scene graphs on the usage level as shown in Figure 2. To 
achieve their integration one could use a generic language 
construct comparable to X3D prototypes. However, once a 
collection of behavior nodes was defined it would be preferable to 
use these nodes as first class nodes in a behavior graph. That 
means, instead of writing statements like <ProtoInstance 
name="AnimateRotation"� as described in section 3.4, it would be 
better to directly include <AnimateRotation key="0 1" � /> in a 
behavior definition. As a consequence all (newly defined) 
behavior nodes should be specified by a grammar in the same way 
like already existing nodes of the general scene graph grammar. 
For that purpose the new XML Schema Behavior3D was 
developed, which represents the complete repertoire of available 
behavior nodes. The idea is to automatically generate this 
grammar from a given number of document locations. Within the 
translation process, all Behavior3DNode instance documents � 
each representing a single behavior node � are collected and 
transformed to be part of the whole grammar. Since this grammar 
is dynamically generated, it always includes the whole available 
repertoire of behavior nodes. An XSLT [XSL] stylesheet was 
developed to do the actual translation and grammar generation 
work. This process can be activated e.g. every time an authoring 
tool will be started. The process is illustrated with a single node 
definition according to the Behavior3DNode grammar. An 
AnimateRotation node is defined at the development level: 
<Behavior3DNode> 
  <Header name="AnimateRotation"/> 
  <Interface/>  <!-- Interface part omitted --> 
</Behavior3DNode> 
The following XML fragment shows the result of the translation 
process. It is the generated definition for the AnimateRotation 
node, which will be one part of the Behavior3D grammar. 
<element name="AnimateRotation" type="AnimateRotationType" 
        substitutionGroup="Animation"/> 
<complexType name="AnimateRotationType"> 
 <complexContent> 
  <extension base="AnimationType"> 
   <attribute name="key" type="x3d:Floats"/> 
   <attribute name="to" type="x3d:Rotations"/> 
   <attribute name="by" type="x3d:Rotations"/> 
  </extension> 
 </complexContent> 
</complexType> 
Through the import of Behavior3D into other scene graph 
grammars all nodes are immediately available as first class 
elements. The third example shows part of the actual behavior 
graph instance document on the usage level. One can notice, how 

AnimateRotation is directly used in comparison to the X3D 
examples given in section 3.4. 
<Sequential begin="5.0"> 
 <AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.5"/> 
</Sequential> 

4.4 Behavior Node Collections 
The previous examples already introduced some of the new 
behavior nodes. However, with BEHAVIOR3D a larger number of 
nodes were defined including all behavior-related X3D nodes 
mentioned in section 3.2. The concept of behavior node 
collections is proposed to group functionally and semantically 
related nodes. The following collections were already defined: 
Time, Event Utilities, Interpolation, and Environmental Sensor 
including behavior nodes from existing X3D components and 
additional nodes for type conversions, logical operations etc.; 
general Device Sensor collections including X3D�s Pointing 
Device Sensor and Key Device Sensor. In the future these 
collections could also include other devices nodes as for example 
described in [Althoff et al. 2002]. Two other collections were not 
only completely specified in terms of Behavior3DNode instance 
documents, but also implemented as Java classes: Animation and 
State Machine. Since these collections have no equivalent in X3D 
they shall be introduced in the following sections in detail. We 
also propose a Constraints collection, which was not defined yet. 

4.4.1 Animation 
This behavior node collection was particularly developed to 
overcome the shortcomings in defining complex animations in 
Web3D formats such as X3D, Shockwave3D, and Viewpoint. On 
the other hand SMIL 2.0 allows the intuitive declaration of 
basically 2D animations. Therefore important SMIL 2.0 concepts 
were adapted from the Animation Modules and Timing and 
Synchronization Module [SMIL 2.0] to the field of 3D graphics. 
Three abstract nodes form the basis of this collection, TimeBase 
and the inheriting nodes Animation and TimeContainer. Figure 5 
shows the inheritance diagram for all nodes of the Animation 
collection.  

Animation
{abstract}

AnimateTranslation

AnimateCoordinate

AnimateColor

AnimateScalar

AnimateRotation

AnimateNormal

TimeSensor

ScalarInterpolator

CoordinateInterpolator

NormalInterpolator

OrientationInterpolator

ColorInterpolator

PositionInterpolator

TimeBase
{abstract}

TimeContainer
{abstract}

ParallelSequential

 

Figure 5. Inheritance diagram of the Animation collection 



Arrows indicate node inheritance, diamonds node composition. 
One can notice the usage of X3D interpolator nodes and the X3D 
TimeSensor node as parts of the new nodes.  
Six instantiable nodes are inheriting from abstract node 
Animation: AnimateTranslation, AnimateRotation, AnimateColor, 
AnimateScalar, AnimateCoordinate, and AnimateNormal. The 
behavior node AnimateTranslation shall be described as a 
representative example here. Its interface is shown in Table 2. 

Table 2. Interface of Node AnimateTranslation1 

 Field Name Data Type Default 
► enabled Boolean true ►
► startTime Time 0.0 ►
 begin Time 0.0  
► stopTime Time 1.0 ►
 end Time 0.0  
 duration Time 0.0  
► cycleInterval Time 1.0 ►
► loop Boolean false ►
 cycleCount Float 0.0  
 cycleTime Time  ►
 active Boolean  ►
 accumulate Boolean false  
 calcMode String linear  
 keySplines Strings []  
► key Floats [] ►
► to Vector3FloatArray [] ►
 by Vector3FloatArray []  
 out Vector3Float  ►

  

The upper fields are inherited from TimeBase. A node-internal 
time was introduced in addition to the global system time. With 
the fields begin, end, and duration one can assign, when an 
animation starts, ends and how long it lasts after the node was 
activated. The following XML fragment shows a possible 
application of these fields. 
<AnimateTranslation begin="3.0" end="8.0" cycleInterval="10" 
  key="0.0, 0.5, 0.99" to="-1 1 0, 0 0 0, 1 -1 0"/> 

This simple animation starts 3 seconds after the startTime event 
was received. It ends after 5 seconds. As a consequence the 
animation cycle with its duration specified by cycleInterval is 
only half done when the animation stops. The next example 
illustrates an animation starting 3 seconds after receiving the 
startTime event and lasting for 3 seconds as specified in the 
duration field. 
<AnimateTranslation begin="3.0" duration="3.0" cycleInterval="10" 
  key="0.0, 0.5, 0.99" to="-1 1 0, 0 0 0, 1 -1 0"/> 

The fields to and by are possible ways to define key values as 
absolute or relative delta vectors. According to the general time 
settings AnimateTranslation generates Vector3Float events with 
the out field, which are typically routed to a Transform node to 
animate the position of all subsequent nodes. 
                                                                 
1 The tables read as follows: Arrows on the left depict fields 

receiving, arrows on the right generating events. Fields with a 
given default value implicate change mode configurable = true. 
The thick lines separate fields inherited from different nodes; 
fields added by the youngest node are shown at the bottom. 

The following definition of an AnimateScalar node illustrates 
another feature of all nodes derived from Animation. Intervals can 
be used to cycle through simple animations and even accumulate 
their results. 
<AnimateScalar cycleInterval="5.0" cycleCount="3.0" 
  accumulate="true" key="0.0, 0.5, 0.99" by="10, 5"/> 
The single animation lasts 5 seconds and will be repeated three 
times. Since values are accumulated with accumulate set to true, 
the following results will be generated: starting with 0, after 2.5 
seconds 10, then 5 at the end of the first cycle. The initial value 
used for the next iteration is 5 (not 0). At the end of the second 
cycle 10 is generated, after the third cycle it is 15. All nodes 
inheriting from Animation also possess the field calcMode. This 
field defines the interpolation mode for values at key points. 
Possible values are discrete, linear, paced, and spline. Their 
meaning equals the definitions of the SMIL Animation Modules. 
Two instantiable nodes are derived from abstract node 
TimeContainer within the Animation collection: Sequential and 
Parallel (see Figure 5). They are grouping and synchronization 
nodes supporting behavior definitions of level 2 according to 
[Roehl 1995]. All animations contained in a Parallel node will be 
started at the same time respectively executed in parallel. The 
Sequential node activates all contained actions in sequence, which 
is illustrated by the following example. 
<Sequential begin="1.0" cycleInterval="5.0"> 
 <AnimateTranslation key="0 1" to="0 0 0, 0 0.05 0"  
   cycleInterval="2.0"/> 
 <AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.5"  
   cycleInterval="3.0"/> 
</Sequential> 
Nodes AnimateTranslation and AnimateRotation are grouped and 
executed after each other. Attribute begin of the Sequential node 
indicates a start of the first animation 1 second after having 
received the startTime event. After 2 seconds AnimateTranslation 
is finished and AnimateRotation is started. In addition to the fields 
inherited from its parent nodes, Sequential defines a new field 
nextAnimation, which can only receive events. When set to the 
Boolean value true, the current animation is stopped and the next 
animation started as defined in the sequence. 

4.4.2 State Machine 
This behavior node collection serves the intuitive description of 
behavior and interaction with connectable state machines. The 
concept developed in Viewpoint [Viewpoint] served as a basis for 
these nodes. According to [Roehl 1995] behavior definitions of 
level 3 can be expressed with the State Machine collection. Figure 
6 depicts the inheritance diagram for the nodes of this collection. 

SequentialStateMachine

BaseStateMachine
{abstract}

StateMachine  
Figure 6. Inheritance diagram of the State Machine collection 

The node SequentialStateMachine allows the realization of a state 
machine running sequentially through its states. The second node 
inheriting from the abstract BaseStateMachine is StateMachine. 
With this node flexible state machines can be modeled through 
explicitly specifying arbitrary states and state transitions. Table 3 
shows the interface of this node. 



Table 3. Interface of Node StateMachine 

 Field Name Data Type Default
 stateCount Integer 1  
 currentState Integer 1 ►
 transitions Strings []  

 
The currentState field inherited from BaseStateMachine was 
defined with the following change modes: configurable="true" 
receivesEvents="false" generatesEvents="true". That means, an 
initial state can be set, but at runtime currentState is just changed 
by the internal state transitions. This is an example for a field 
access type not directly expressible with X3D and illustrates the 
advantages of the field concept explained in section 4.1.1. 
The important field added by StateMachine is transitions. Every 
state transition within this list of stateCount transitions will be 
specified with a value quadruple. The following XML fragment 
shows an example with 3 defined states as indicated with the 
attribute stateCount. 
<StateMachine stateCount="3" transitions=" 
  1 2  LCD_Sensor.touchTime  OpenLaptop.startTime, 
  2 1  LCD_Sensor.touchTime  CloseLaptop.startTime, 
  2 3  Keyboard_Sensor.touchTime  OpenKeyboard.startTime, 
  3 2  Keyboard_Sensor.touchTime  CloseKeyboard.startTime"/> 

Since states are represented as integer values, the first entries of 
the quadruple declare the start and end state of a specific 
transition as integers. The third value indicates the behavior or 
interaction, which actually triggers the state transition. The last 
value holds the behavior to be triggered as a result of the state 
transition. Both values are references to already defined behavior 
nodes using their DEF attribute. The substring after a dot 
indicates the field of a specified node, which must be of type time. 

5. Integration and Implementation 
In the previous chapters the basic BEHAVIOR3D concept and its 
realization with XML Schema were introduced. Though 
BEHAVIOR3D was inspired by X3D, it is an independent behavior 
language. However, behavior declarations can be translated to 
X3D documents in order to be actually run in an appropriate 3D 
viewer. This chapter explains the realization with X3D, sketches 
the successful integration into the project CONTIGRA and 
demonstrates an interactive application example. 

5.1 Implementation with X3D 
Beside the XML interface document of a behavior node there 
exist two partly automatically generated Java files for each node. 
Java was chosen as the implementation language instead of 
JavaScript to make use of its object-oriented and other language 
features. Moreover, projects in the context of X3D, such as the 
XJ3D player [XJ3D], are also being developed in Java and form a 
possible basis for future integration. Our current implementation 
is based on the Java platform scripting reference of the VRML97 
standard, since the X3D SAI-implementation is not available yet. 
Take for example a new behavior node called ExampleNode. Its 
interface is declared in ExampleNode.xml. With the help of XSLT 
stylesheets all implementation documents are automatically 
generated. Figure 7 depicts the transformation process from this 
Behavior3DNode instance document to the corresponding Java 
and X3D documents. 

With the stylesheet NodeTemplate.xslt the Java class 
ExampleNodeTemplate.java will be generated. This class contains 
access methods for the fields of a node and corresponding 
attributes, which are automatically initialized. For every field with 
change mode receivesEvents=true methods will be generated for 
receiving  events. All other initializations, such as the processing 
of field mappings to used nodes, are also generated. 
The ExampleNodeTemplate.java class inherits from the behavior 
class specified in the attribute extends of the node interface 
declaration. This way the emerging Java class hierarchy exactly 
represents the declared behavior node hierarchy. The base class 
for all behavior nodes is BaseNode.java, so that all template 
classes will indirectly inherit from it. This class takes care for 
correct initialization of nodes, general event handling using Java 
reflection, as well as managing debugging information. It is itself 
derived from class Script.java of the VRML97 Java platform 
scripting reference. 
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Figure 7. Transformation process for a BEHAVIOR3D node 

With the stylesheet Node.xslt the Java class ExampleNode.java 
will be generated, extending the parent class ExampleNode 
Template.java. As opposed to its parent class, which should not 
be changed at all, this class only supplies an initial code frame, 
where custom code needs to be added to realize the actual 
behavior. Event processing methods inherited from the parent 
class can also be extended. Both automatically generated Java 
classes considerably facilitate the implementation of functionality 
and reduce programmer�s work. 
Since an X3D scene graph cannot use node definitions of the 
proposed XML Behavior3D grammar and the associated Java 
classes per se, an X3D wrapping becomes necessary. The lower 
part of figure 7 shows the translation of ExampleNode.xml to an 
X3D prototype node with the stylesheet X3DPrototype.xslt. The 
generated prototype basically declares its fields corresponding to 
the node interface. It also contains an X3D script node, which 
itself references the Java class ExampleNode.java described 
above. Within the script node�s interface three fields are 
generated for every field declared in ExampleNode.xml, i.e. 
fieldName, set_fieldName, and fieldName_changed. This allows 
the easier mapping of BEHAVIOR3D change modes and provides 
more implementation flexibility. The automatically generated 



X3D behavior prototype can be used in arbitrary X3D scene 
graphs. It is to be mentioned, that once the Scene Authoring 
Interface (SAI) will be available, it will significantly reduce the 
complex translations described in this section. However, it could 
be shown, that BEHAVIOR3D can be easily implemented on the 
basis of X3D and delivers functioning results. 

5.2 Integration into Contigra 
As already mentioned earlier, the BEHAVIOR3D approach was 
developed as part of the CONTIGRA project [Dachselt et al. 2002, 
Contigra]. Within that project a 3D component is declaratively 
described in two separated XML documents, containing its 
interface declaration and implementation. Components might 
contain subcomponents, arranged in a component graph as a 
method of composition. In addition to that a component usually 
consists of various scene graph parts, particularly in the case of a 
single component without sub-components. In this section the 
focus is laid on the SceneGraph part. Figure 8 depicts this section 
of the implementation grammar�s structure. The basic diagram 
symbols are explained in section 4.2.1. A switch indicates a 
choice of elements. 
One can observe a strict separation of the three different scene 
graph hierarchies Geometry, Audio, and Behavior. As opposed to 
many 3D scene graph technologies, with CONTIGRA a clear 
separation of these graphs is enforced for the reason of better 
reusability, easier maintainability, exchangeability, and clarity. A 
component�s behavior graph is a transformation hierarchy 
consisting of behavior nodes made available through the included, 
automatically generated grammar Behavior3D as described in 
section 4.3. That means behavior nodes such as Sequential, 
StateMachine, AnimateTranslation etc. can be directly used 
within the implementation document of a 3D component. 
As a consequence of the SubSceneGraphs division, the separated 
link section SceneGraphLinks will become necessary to actually 
connect related nodes of these graphs. In order to use more 
powerful node and field connections than possible with single 
event-based ROUTE-statements, an extended link concept was 
developed, where links convey a specific semantics and form n:m 
relations.  
CONTIGRA components can be translated to various 3D formats. 
Due to the close orientation towards X3D it was natural to first 
develop a translator to that format. As a proof of concept 

components with all their sub-components and sub scene graphs 
can be translated to valid X3D/VRML97 documents using again 
XSLT stylesheets. In this process the X3D prototypes and Java 
classes generated for each behavior node are employed. 

5.3 Application Example: Interactive Laptop 
To illustrate the practical application of the BEHAVIOR3D concept 
one of the created examples will be introduced in this section. By 
touching its lid a laptop shall be opened. After touching the 
keyboard it should fold up. Both actions should be invertible. It is 
forbidden to close the laptop while the keyboard is folded up. The 
geometry of a laptop2 consisting of three parts was the basis for 
the behavior description of this scenario. The whole laptop was 
realized as a CONTIGRA component. The following XML code 
shows the complete behavior description in terms of the behavior 
graph. In addition to that, scene graph links are necessary to 
connect behavior to geometry nodes. They are left out here, since 
they are straightforward and not a direct part of the behavior 
concept. 
<TouchSensor DEF="LCD_Sensor"/> 
<TouchSensor DEF="Keyboard_Sensor"/> 

<StateMachine stateCount="3" transitions=" 
  1 2  LCD_Sensor.touchTime  OpenLaptop.startTime,  
  2 1  LCD_Sensor.touchTime  CloseLaptop.startTime,  
  2 3  Keyboard_Sensor.touchTime  OpenKeyboard.startTime,  
  3 2  Keyboard_Sensor.touchTime  CloseKeyboard.startTime"/> 

<AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.7" 
  cycleInterval="2" DEF="Openlaptop "/>  
<AnimateRotation key="0 1" to="1 0 0 -1.7, 1 0 0 0" 
  cycleInterval="2" DEF="CloseLaptop"/>  

<Sequential DEF="OpenKeyboard"> 
 <AnimateTranslation key="0 1" to="0 0 0, 0 0.05 0" 
   cycleInterval="1" /> 
 <AnimateRotation key="0 1" to="1 0 0 0, 1 0 0 -1.5" 
   cycleInterval="1" />  
</Sequential> 
<Sequential DEF="CloseKeyboard"> 
 <AnimateRotation key="0 1" to="1 0 0 -1.5, 1 0 0 0" 
   cycleInterval="1" /> 
 <AnimateTranslation key="0 1" to="0 0.05 0, 0 0 0" 
   cycleInterval="1" /> 
</Sequential> 
                                                                 
2 Laptop courtesy of Richard Choi (http://www.web3d.co.kr) 

Figure 8. Part of the XML Schema hierarchy for component implementations 



First of all two TouchSensors are defined, which are associated 
with the LCD and keyboard geometry of the laptop. This 
association is usually established in X3D through the insertion of 
sensors into the appropriate scene graph part. With this concept 
they are separately defined and inserted later during the 
translation process with the help of a link statement to the 
geometry graph. 
Afterwards one can notice the modeling of the three states, which 
are visualized in Figure 9. The laptop can be closed, opened, and 
opened with the keyboard folded up. State transitions are declared 
with associated triggers and resulting behavior. 

 
Figure 9. The three states of an interactive laptop 

With the help of two AnimateRotation nodes the opening and 
closing of the laptop is realized as a smooth animation. It is 
sketched in Figure 10 on the left. The two Sequential nodes are 
slightly more complex, since the keyboard is first translated 
upwards before it is rotated to the back. Folding it down 
represents the inverse operation. Figure 10 on the right visualizes 
this animation. 

 
Figure 10. Two animations of the laptop example 

6. Discussion and Future Work  
In this paper a flexible concept for declaratively modeling 3D 
object behaviors was introduced. The good potential of X3D and 
its limitations for declarative behavior definitions were analyzed. 
Though the BEHAVIOR3D node concept resembles the X3D node 
model, node inheritance and an improved field concept were 
added. X3D nodes, parts of the prototype concept and VRML++ 
were combined to form a coherent concept with object-oriented 
features for behavior graphs, i.e. inheritance, strong typing, and 
polymorphism. This results in a considerable increase of node 
reusability and maintainability. 
To be format-independent a new XML-based definition of node 
interfaces was developed according to the node concept. 
Implementation templates can be automatically generated from 
these Behavior3DNode instance documents, where custom code 
additions are reduced to a minimum. The generated classes could 
also be written in C++ instead of Java. Since the declarative 
behavior graph is neither dependent on X3D nor CONTIGRA, it 
could be translated to other 3D technologies, too. However, a 
technical orientation towards the future Web3D standard naturally 
implicates best translation results, which are not guaranteed with 
other technologies. 

We also proposed a rich set of predefined behavior nodes 
categorized in comprehensive collections employing inheritance. 
Through the consideration of all behavior related X3D nodes a 
full backward compatibility was achieved. In addition to that the 
node repertoire was considerably expanded, especially for 
animation and state machine behavior. Our notion of node 
collections easily translates to X3D components. In fact, the 
introduced collections can also be seen as a proposal for new X3D 
behavior components. 
The repertoire of behavior nodes can be made available in an 
automated fashion through the novel dynamic grammar 
generation. This way both built-in and new nodes can be 
syntactically used as first class language elements. The idea of 
automatically generating a dynamic scene graph grammar could 
be applied to other X3D extensions as well. Thus the 
homogeneous usage of all nodes would syntactically improve 
X3D documents. The proposed concepts are not limited to 
behavior nodes alone. Node inheritance, improved field access 
types, automated implementation class generation, and dynamic 
language extensions could be used as a framework for developing 
new X3D nodes in general. We hope to stimulate a discussion of 
these issues with our work. 
It was further shown that the suggested behavior definitions are 
transformable to actual X3D scenes. BEHAVIOR3D was 
successfully integrated into the CONTIGRA project through 
defining a separate behavior graph. This demonstrates the 
practicability of our approach for developing 3D applications. An 
important limitation of the approach must not be unmentioned. 
Behavior, interactions, and functionality always need to be 
implemented imperatively at some point. Elegant declarative 
modeling of behavior must be paid for with more programming 
�in the back�. Moreover, declarative node connections tend to 
slow down the execution within a 3D player and shift the 
responsibility to clever implementations of the player. 
As future work more behavior nodes should be defined and 
implemented. The proposed behavior node collections need to be 
extended and harmonized with existing X3D components. A 
visual authoring tool for editing behavior will be built to further 
ease the creation of interactive scenes for non-experts. Finally, it 
should be interesting to discuss and to investigate more closely, 
how the introduced ideas can be integrated into X3D. 
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