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ABSTRACT 
Even though numerous Web3D technologies exist, most of them 
do not support a high-level, multi-disciplinary authoring process. 
Moreover, concepts of reuse are rarely provided. A component-
based approach is introduced with the CONTIGRA architecture 
to construct interactive, three-dimensional applications, either 
stand-alone or web-based. The approach is entirely based on 
declarative XML documents describing the component imple-
mentation, its interface, as well as component configuration and 
composition of 3D user interfaces and virtual environments. 
Extensible 3D (X3D) is used as the scene graph basis. However, 
the resulting applications can be translated to other 3D tech-
nologies, too. Another advantage of the approach is reuse both at 
the implementation level and the higher abstract component 
level. This paper introduces the overall architecture and the 
XML schemas used for the component documents. It finally 
outlines the associated authoring process and tools involved.   

Categories and Subject Descriptors 
H.5.2 [Information Interfaces]: User Interfaces – graphical 
user interfaces (GUI), prototyping, standardization. I.3 
[Computer Graphics]: I.3.6 Methodology and Techniques – 
languages. I.3.7 Three-Dimensional Graphics – virtual reality. 
D.2 [Software Engineering]: D.2.2 Design Tools and 
Techniques – user interfaces. D.2.11 Software Architectures – 
domain-specific architectures, declarative languages. 

Keywords 
Component-based development, 3D Components, 3D Widgets, 
3D User Interfaces, Virtual Environments, Extensible 3D (X3D), 
XML Schema, CONTIGRA. 

1. INTRODUCTION 
The acronym CONTIGRA stands for Component OrieNted Three-
dimensional Interactive GRaphical Applications. In this ongoing 
research project [2,5] metaphors and interaction principles for 
three-dimensional user interfaces are investigated. A declarative, 

component-based architecture on the basis of X3D (Extensible 
3D) [18] and XML (Extensible Markup Language) [19] was 
designed for the construction of web-enabled, desktop Virtual 
Reality applications and 3D virtual environments (VE). 

Due to considerable improvements in 3D graphics hardware and 
fast-evolving Internet technologies, the availability of 3D 
technologies for consumer platforms increases. As a result, the 
number of web-based three-dimensional applications in domains 
such as e-commerce, product presentations, entertainment, and 
virtual actors grows. By now a multitude of proprietary web 3D 
formats is available. This impedes standardization, particularly 
since most of the technologies are tailored to special application 
domains. VRML [16] as the established Web3D graphics 
standard is widely used. However, due to various problems it is 
rarely used for enabling applications such as e-commerce sites. 
X3D as the VRML successor promises to be more successful due 
to the flexible XML-encoding, modularization through profiles 
and smarter 3D browsers. However, no single 3D technology is 
expected to dominate the Web3D arena in the near future. 

Despite the difficulties in selecting an appropriate technology, 
another major problem is the lack of guidelines, interaction 
paradigms, and design standards for three-dimensional user 
interfaces. Moreover, only few authoring tools exist, which are 
often tailored to a specific Web3D format and application 
domain. Concepts of reuse are mostly missing, which makes it 
extremely difficult and tedious to author non-trivial interactive 
3D applications. Projects are often developed from scratch and 
involve a great deal of programming without reusing building 
blocks. This excludes non-programmers from designing 3D 
applications. Graphic designers, sound designers, and other 
experts should contribute to authoring them, since such systems 
inherently contain rich media elements. That is why rapid 
prototyping and high-level visual authoring tools need to be 
developed. 

With regard to the current situation and the mentioned problems 
we conceive our vision of an available repertoire of 3D 
components, such as standardized 3D widgets. These interface 
controls and VE building blocks should be easy to construct, to 
configure, and to reuse in various projects in a component-
oriented fashion. The underlying component architecture should 
not be code-centered, but instead employ a declarative, 
document-centered approach, which facilitates readability, rapid 
prototyping, and visual tool support. Authoring tools should 
provide high-level views as an abstraction from scene graph 
details, thus promoting multi-disciplinary development. 
Applications should not depend on a specific 3D format to be 
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portable and adaptable to various platforms. Web3D and other 
Internet media standards must be supported. 

This paper is organized as follows: The next section relates our 
work to existing approaches, followed by an introduction to the 
overall architecture and CONTIGRA layers. The main part is 
devoted to the XML-based implementation and the presentation 
of the CONTIGRA markup languages. Thereafter the authoring 
process is described in section 5 along with tools associated with 
it. This is followed by a conclusion and outline of future work. 

2. RELATED WORK 
Until now there are only a few component approaches to 
constructing interactive 3D applications, even though the usage 
of component concepts for 3D graphics seems to be promising. 
An overview of this comparatively new field of research and a 
detailed classification of existing 3D component approaches is 
given in [3]. Current component technologies are inherently 
oriented towards code construction using programming 
languages. None of the competing technologies such as CORBA, 
DCOM or Enterprise Java Beans (EJB) is tailored to 3D 
applications on the web. Up to now component technologies are 
only rarely used in VE systems [1].  

According to [3] 3D component approaches can be coarsely 
divided into code-centered and document-centered solutions. 
Among the first is the NPSNET-V system [1]. It primarily 
supports the development of scalable, distributed VE. Java 
components can be dynamically loaded across a network at 
runtime. In addition to that, the proprietary component system 
Bamboo [17] was designed, where code modules operate in a 
cross-platform and cross-language manner [1]. The i4D archi-
tecture [11, 12] is a dedicated 3D component solution. It 
introduces so called actors, high-level attributes, and actions to 
modify them, which all together create an abstraction to scene 
graphs. Components are realized as DLL/DSO, the layered archi-
tecture runs on various platforms and 3D APIs. Smart Virtual 
Prototypes [15] are based on VRML and Java classes to define 
simulation components consisting of user interface objects 
(realized as VRML prototypes), interactor components (on the 
client side) and virtual components (on the server side), both 
implemented as Java classes. Since coding in one or the other 
language is essential for all these approaches, they are not 
suitable for non-programmers. The Three-dimensional Beans 
approach [9] combining JavaBeans and Java3D takes that into 
account. It provides the 3D Beanbox editor, used for visual 
authoring and assembling of 3D Beans. Meta Beans [8] 
supplement this concept. They are associated with 3D Beans and 
encapsulate customizable interaction metaphors in components. 
Abstractions to specific 3D toolkits and component technologies 
are not provided with this approach. Recent developments within 
this project also include an XML description language for 3D 
Beans.  

This shows a trend towards a declarative description of 3D 
components. The Jamal declarative component framework [13] is 
based on a flexible and expandable Component Interface Model. 
The Bean Markup Language (BML) is being used for declarative 
description of component connections. The isomorphisms 
between VRML-Prototypes, X3D-documents, Java Beans, and 
IDL described in [14] show the possibility to define component 

interfaces and connections in an abstract way, which can be 
translated to a specific implementation at a later point. This idea 
influenced the CONTIGRA architecture. With 3dml, a higher-level 
markup language for 3D interaction techniques and VE 
applications was recently introduced [10]. 3dml supports 
readability and rapid development. Since it is well suited for 
encapsulating interaction techniques, it could probably be used in 
addition to the CONTIGRA behavior graph (see section 4.1). 

Among the declarative approaches one can also find early 
extensibility mechanisms such as Open Inventor Nodekits and 
VRML Prototypes, being limited to the respective format and 
restricted in terms of configuration and distribution. The recent 
X3D developments include advanced extensibility concepts. 
Beside VRML prototypes the concept of profiles allows scene 
graph extensibility and the component mechanism modula-
rization within X3D players. X3D profiles are nevertheless only 
subsets of nodes, mainly for a certain application domain, but not 
components in the sense of reusable building blocks. X3D does 
not provide abstractions to scene graph level nor explicit 
definition of three-dimensional component interfaces nor high-
level configuration and assembly. Since X3D is based on a well 
established scene graph concept and extensible set of nodes, its 
XML-encoding can be translated to other scene graph based 
formats. The other reason for choosing this format as the basis 
for the CONTIGRA scene graph encoding is the expected 
standardization of X3D. 

3. THE OVERALL ARCHITECTURE 
The CONTIGRA approach comprises a 3D component concept that 
is largely independent of implementation issues and allows easy, 
declarative, and multi-disciplinary authoring of 3D applications. 
It is based on structured documents describing the component 
implementation, their interfaces, as well as the assembly and 
configuration of 3D components to more complex interactive 
applications. 

3.1 Example of a Web3D Application 
A short introduction of an application example from the 
information visualization domain shall illustrate the different 
development stages within the CONTIGRA architecture. Fig. 1 
depicts a navigation technique for medium-sized trees, called 
Collapsible Cylindrical Trees (CCT) [4]. Child nodes are 
mapped on rotating cylinders, which will be dynamically 
displayed or hidden according to the current path or sub-
hierarchy. A fast interaction technique allows a single-click 
navigation to reach every node and open the associated web page 
or perform some other action on it. 

Figure 1. Web sitemap of the MMT research group using 
the CCT visualization & navigation technique 



3.2 Component Development Stages 
A CONTIGRA component is not a binary executable, but defined as 
an encapsulated component implementation based on declarative 
scene graph documents plus a separated component interface 
document. The development of a component-based three-
dimensional application as sketched above will demand activities 
on different abstraction layers and development stages. Fig. 2 
depicts the various stages and their associated tasks, resulting 
files, and tools. 

At the development level simple or compound 3D components 
have to be implemented. Scene graph files, media assets, and 
script files belong to the implementation of a component. People 
involved at this stage are scene graph experts, programmers, and 
3D designers. The same people create the component interface 
using a component description language. Component functio-
nality, configurable parts, and parameters as well as rich meta 
information are coded in this document. Thus the results of this 
level are deliverable, functioning standard components in terms 
of non-executable document files, such as a CCT wheel 
component. Tools used are common XML editors, the Contigra 
ComponentBuilder (see section 5), as well as scripting and 
media authoring tools. 

The next level, component distribution, assumes a set of 
packaged components, where only the component interface is 
visible and the implementation remains encapsulated. The 
components can be distributed over the World Wide Web and 
stored in databases. The associated task at this level is the 
retrieval of suitable components. Project managers or web 
engineers have to find the appropriate components for their 
projects. A web portal provides query functionality and helps to 
access desired components. Once the components are selected, 
they can be deployed at the configuration and assembly level. 
Typical tasks are the configuration, assembly, and connection of 
components to build more complex 3D applications. People 
involved at this stage can be non-3D-experts, for example project 
managers, web engineers, and designers. The CONTIGRA 
SceneBuilder tool (see section 5) is used to adapt the components 
to special needs and to connect them. The results of this stage are 
declarative documents describing the entire 3D application. Until 
this point a neutral, essentially format-independent represen-

tation should be used, which can now be exported to a specific 
3D technology, such as Java3D or X3D. The resulting application 
can be viewed at runtime level within a 3D viewer. Adaptations 
to current system performance or user preferences can be done at 
runtime, too. 

4. THE XML-BASED IMPLEMENTATION 
After having introduced the basic architecture, this section 
illustrates the implementation of the CONTIGRA concept using 
markup languages coded with XML Schema [20]. Since a 
homogeneous encoding is provided on all levels, this is a 
consistent approach for all abstraction stages starting from scene 
graph level up to the description of complex component 
assemblies. In [3] advantages of using XML are described in 
detail. Among them are platform independence, standardization, 
interoperability with other Internet standards, availability of 
tools, and document processing using the Document Object 
Model [6] or XSL Transformations [21]. The hierarchical 
structure predestines XML for scene graph encodings, as one can 
see with X3D. XML Schema in particular makes it easy to 
integrate the various markup languages on all CONTIGRA levels 
through namespaces. In addition to that, data types, derived 
types, substitution groups, and abstract types make it easier to 
code high-level parameters and to employ object-oriented 
concepts, e.g. for component classes. 

4.1 Level 1 – CONTIGRA SceneGraph 
To illustrate the different levels, the focus of the following 
sections lies on the documents involved in the development 
process along with their underlying grammars.1 Fig. 3 contains 
the identified tasks of the development stages and shows the 
associated XML documents with their schemas as well as other 
connected resources. The documents within the shaded part 
constitute a single 3D component.  

The Contigra SceneGraph schema serves as a component 
implementation language and integrates various scene graph, 
media, and script files. The most important documents of the 
implementation level are the scene graph documents. The X3D 
XML encoding is used for describing the component geometry. 
Though X3D (respective VRML) contains some behavior and 
audio nodes, the scene graph is divided into different, separated 
parts. These are basically specialized collections of nodes. They 
are coded with separate grammars to solve problems currently 
not addressed in X3D. In [7] Döllner and Hinrichs developed the 
idea of separating geometry and interaction behavior in various 
graphs. This concept is expanded to a separated 3D audio graph, 
since spatial audio effects are not sufficiently provided by 
VRML/X3D. Take for example the description of church 
acoustics, including reverb, sound reflections etc. Using the 
newly developed Audio3D Schema, this can be described 
separately and could be reused for various similar church 
geometries. The Behavior3D schema currently being developed 
integrates existing X3D behavior nodes, adds new interaction 
nodes and provides uniform access to external methods and 
functions coded in script files, JARs etc. Both behavior and audio 
                                                             
1 The CONTIGRA Schemas can be found online under 

http://www.contigra.com. 
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graph are planned to become X3D profiles as soon as the X3D 
Schema has reached a mature status. References to external 
video, sound, and script files are embodied in the respective 
nodes. 

The scene graph structures can either reside in a large document 
containing all parts of a component or in separate documents, 
which is preferable in terms of reuse on the implementation 
level. All nodes to be used later as configurable parameters of a 
component should be named using the DEF-mechanism provided 
by X3D. To integrate all implementation parts and to reference 
only the required sub scene graphs, an XML document coded 
with the CoSceneGraph schema is used. It serves as a flexible 
wrapper to the pieces of an implementation. 

Fig. 4 shows the structure of this grammar2. A CoSceneGraph 
instance document contains a Header with meta information 
about the developer, company, version etc. The following 
optional parts Geometry, Audio, and Behavior contain references 
to different sub scene graphs of the respective type. The 
following extract from the CCT example application illustrates, 
how parts of the scene graph are referenced using XLink with 
XPointer syntax. 

<Geometry> 
 <CoSceneGraphFile xlink:href="dial.xml#xpointer 
         (//Group[@DEF='DialGeometry'])" xlink:label="DialGeometry"/> 
 <CoSceneGraphFile xlink:href="item.xml#xpointer 
         (//Group[@DEF='ItemGeometry'])" xlink:label="ItemGeometry"/> 
 … 
</Geometry> 
                                                             
2 In the diagrams some parts are left out for space reasons. 

Dashed lines depict optional elements, attributes are not 
included. The symbol with squares in a row denotes a sequence 
of elements, squares in a column stand for the content model 
All, whereas the switch indicates a choice of elements. 

Alternatively the appropriate group node could be included as an 
element. The following section GraphLinks establishes 
connections between the different scene graph parts. To stick to 
the church example, it is necessary to associate the simplified 
audio geometry of a church (e.g. some simple boxes) to the real 
detailed geometry. To avoid hard coding this association in either 
of the documents, links are stored under the GraphLink element. 
AttributeLinks are similar to VRML routes, since they connect 
fields. DependenceLinks establish links between nodes. If the 
source node is copied, deleted, or not rendered at all, the same 
actions are performed on the linked node. During the processing 
of a CoSceneGraph instance document all scene graph parts will 
be collected and internally stored as only one X3D scene graph. 
For this component implementation an interface document is 
written on the next level. Using enhanced X3D, the CONTIGRA 
SceneGraph level provides an abstraction to proprietary 3D 
formats, since documents can be translated to specific Web3D 
formats as needed. 
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Figure 5. Structure of XML schema CoSceneComponent 

4.2 Level 2 – CONTIGRA SceneComponent  
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graph implementation. As such, it provides an abstraction level 
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component deployment. Each 3D component has one associated 
CoSceneComponent document. A number of tasks shown in Fig. 
3 are performed in the various sections of the interface 
document. Thus a CoSceneComponent instance contains the 
component’s documentation, its application purpose, license and 
deployment information, the description of configurable 
geometry and other parameters, offered methods of the 
component, and references to child components. Fig. 5 depicts 
the most important elements of the CoSceneComponent schema. 
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Document-Based Inheritance  
Before explaining the elements of the grammar, the idea of 
document-based inheritance is introduced. Whereas typical 
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combines interface declarations with a specific component 
configuration. Accessible parts, parameters, and methods are not 
only listed, but values are already assigned to them. That means, 
one CoSceneComponent document describes one specific 
instance of a component as an instance of this class of compo-
nents. Consequently, a document serves as a prototype, which 
can be copied and partly changed to produce another component 
of that class. Take for example the wheels of the CCT 
application, where each wheel is derived from another one, just 
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with a changed material parameter and item hierarchy. The 
CoSceneComponent grammar provides a kind of generic super 
class, whereas instance documents implement specific sub 
classes. The following header extract from a blue CCT wheel 
shows, how the prototypic document serving as a basis is being 
referenced using the referenceDocument attribute. 

<Info id="CCCT3" name="CCT-Wheel_blue" lastRevision= 
  "2001-09-12" version="1.0"> 

<ComponentClass xsi:type="CoCCTComponent" 
  referenceDocument="CCT-WheelComponent_Proto"/> 

</Info> 

To avoid arbitrary component classes and an uncontrolled growth 
of documents, the element ComponentClass was introduced with 
a typed component hierarchy. This extensible hierarchy contains 
classes such as CoComponent, CoWidgetComponent, CoSlider-
Component, CoAvatarComponent etc. It was developed to bring 
forward standardization efforts of three-dimensional user 
interfaces.  

4.2.2 Component Description 
The Header and Documentation elements describe a component 
textually. They are used for search and retrieval. Within the 
header the Info element contains basic information such as 
component id, name, lastRevision, version, certificate, and the 
component class. The class concept is explained later. The 
Developer section provides information about the author, 
company etc. Within the element Deployment information is 
given on how to use this component and how to author it. 
AuthoringSupport contains links to specialized editors for this 
component as well as an iconic representation for use in visual 
authoring tools. The LicenseModel element is used for business 
aspects and billing issues for commercial components. Semantics 
contains Hints with attributes such as mayContain, suitedFor, 
combinedWith, and complements. Though difficult to formalize, 
these hints serve as decision guidance, for example which kind of 
3D menu to use in an application. 

4.2.3 Component Interface and Configuration 
The Implementation part establishes the connection to component 
implementations. It is basically a pointer to a CoSceneGraph 
element, which will usually reside in a separate file. References 
to named scene graph parts (e.g. exchangeable geometry) will 
always be resolved via this link to a CoSceneGraph document. 
The description of component functionality and configurable 
high-level parameters is included in the following three parts 
GeometryList, ParameterList, and MethodList of the interface 
document. All visible and exchangeable geometry parts of the 
component are listed as Geometry elements within the 
GeometryList. 

<GeometryList> 
<Geometry name="CylinderGeometry" changeMode= 
    "configurationTime" authorRole="design" 
    description="Geometry of a rotating cylinder" 
    nodeRef="DialGeometry"/> 

 <Geometry name="ItemGeoemtry" changeMode= 
           "runtime" authorRole="design" description="Geometry of  
            a menu item" nodeRef="ItemGeometry"/> 
 … 
</GeometryList> 

This excerpt from a CCT-Wheel instance references two named 
parts of the scene graph. Notice the abstraction from scene graph 
details at this point. The link to the real sub scene graphs 
representing this geometry is only established via the 
CoSceneGraph document. It contains scene graph references and 
consequently finds the matching node names, defined with the 
DEF attribute. Attributes name and description are used in 
authoring tools. The attribute changeMode may contain the 
values never, configurationTime, and runtime. They indicate, 
that a part cannot be changed at all, can only be modified at the 
configuration level, or can be changed even at runtime. A value 
set to configurationTime or runtime is comparable to an eventIn 
setting in VRML. With the help of the authorRole attribute it can 
be described, which person can modify which part or parameter 
of the component. This supports a multi-disciplinary authoring 
process. Possible values are view, design, program, and 
doEverything, which represent different access rights. 

With the ParameterList containing an arbitrary number of 
Parameter elements, all other exposed high-level parameters are 
described, providing an abstraction to the scene graph level. The 
excerpt shows typical parameter definitions. Note, that the 
attributes of element Parameter are the same as of the element 
Geometry with the addition of the bindable and fieldRef 
attributes explained below. 

<ParameterList> 
<Parameter name="WheelMaterial" changeMode= 
   "configurationTime" authorRole="design" bindable="false" 
   description="material of the cylinder" nodeRef="CylinderMat"/> 
… 
<Parameter name="ItemFont" changeMode="configurationTime" 
   authorRole="design" bindable="false" description="text font of 
   menu items" nodeRef="ItemTextFont" fieldRef="family"> 

  <cpt:CoString>Arial Narrow</cpt:CoString> 
 </Parameter>  

<Parameter name="Width" changeMode="runtime" 
   authorRole="program" bindable="true" description="calculated  
   width of the cylinders"> 

  <cpt:CoFloat>12.0</cpt:CoFloat> 
 </Parameter> 
 … 
</ParameterList> 

The parameter “WheelMaterial” references a material node in 
the scene graph.  The provided new material settings are left out 
for space reasons. Parameter “ItemFont” is an example for a 
parameter referencing a field within a scene graph, in this case 
the family field of a named FontStyle node, which will be 
substituted by the new given value. The attribute fieldRef was 
introduced for such references. Parameter “Width” is an example 
for an exposed parameter not associated with parts of a scene 
graph at all. The width of a CCT wheel is calculated 
automatically. Since the new attribute bindable is set to true, this 
parameter can be linked to others, which will be notified after a 
change has happened. It resembles a VRML eventOut. The 
content model for a Parameter is defined using the XML Schema 
any element, which allows the flexible insertion of various types. 
As one can see with the elements CoString and CoFloat, basic 
parameter types are already provided. 

Finally the element MethodList contains all offered methods of a 
component. Method elements contain the attribute name, which 



is matched with corresponding parts of the behavior graph, a list 
of typed Parameters for that method, and a possible return value 
Result. In the CCT example methods such as CollapseWheel and 
ExpandWheel are defined, which can be called from the parent 
component. It is to be mentioned, that for parameters with 
changeMode set to configurationTime or runtime get- and set-
methods are automatically being generated. 

4.2.4 Component Assembly and Linking 
The last part of a CoSceneComponent document is used to 
describe Subcomponents of a compound component. Since this 
element is optional, it can be left out for simple components such 
as the CCT wheels. However, a compound component contains a 
transformation hierarchy of sub components. Every Transform 
element contains typical transformation attributes and a reference 
to a CoSceneComponent instance file, as seen in this example. 

<Subcomponents> 
<Transform translation="1.0 0.0 0.0">  
 <CoSceneComponentFile> 
  CCT-WheelCoRed.xml 
 </CoSceneComponentFile> 

 </Transform> 
 <Transform translation="11.0 0.0 0.0"> 
  <CoSceneComponentFile> 
   CCT-WheelCoBlue.xml 
  </CoSceneComponentFile> 
 </Transform> 
 … 
 <ComponentLinkList>…</ComponentLinkList> 
</Subcomponents> 

While processing a compound CoSceneComponent instance, the 
parameter declarations of all sub components are collected and 
added to the parameter list of the container component. To avoid 
this behavior, parameters of sub component can be explicitly 
prevented from being accessible from the parent component 
interface using the BlockedParameters element. The 
ComponentLinkList establishes links between exposed parame-
ters of different components, possibly involving a method call. 

4.3 Level 3 – CONTIGRA Scene 
CONTIGRA Scene serves as a high-level component integration 
language. An instance document of this grammar represents a 
declarative description of an interactive VE or 3D application, 
which is ready for translation into an executable 3D format. It 
contains a link to a compound component and general scene 
parameters. Fig. 6 shows a schema diagram of the CoScene 
grammar. A scene consists of a Header element with typical meta 
information. The Documentation part contains not only the 
description of a 3D scene, but also a Help element for application 
help information. Up to the SceneComponent level all coding 
was basically format independent. The SystemRequirements 
section establishes the connection of the compound scene 
component to a specific runtime environment. This includes 
hardware requirements such as Processor, Memory, and 
InputDevices / OutputDevices. Estimated PerformanceCosts and 
the required minimal FrameRate are also coded in this section. In 
addition to that, WindowSize demands and Player hints for the 
integration into web pages are described here. This section can 
be easily extended to include parameters such as required 
network connection etc. 

The element SceneParameters describes typical scene character-
ristics, such as Camera, ViewpointList, and LightList. In addition 
to that, the element AudioScene defines global audio parameters 
for the Environment or the Listener’s initial position. The 
element RootComponent eventually contains a reference to a 
CoSceneComponent instance. Usually this instance will contain 
subcomponents. That is to say, the compound component 
represents the whole 3D application without the context of a 
specific runtime environment or 3D format. 

5. AUTHORING PROCESS AND TOOLS 
TO PRODUCE CONTIGRA DOCUMENTS 
In sections 3 and 4 the different levels of the overall architecture 
were explained along with the developed XML schemas and 
documents. This section illustrates, how the authoring process 
and the tools involved are conceived. The CONTIGRA Component-
Builder and SceneBuilder tools are currently under development. 
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Figure 6. Structure of XML schema CoScene 



Since detailed results are not yet available, this section only 
explains their conception. Both tools are part of a complex 
authoring environment, a 3D user interface builder. A 
deliverable component consists of XML scene graph documents, 
media and script files, the integrating CoSceneGraph instance 
document as well as the component interface declaration. To 
create it, component developers are using external editors for 
X3D and media authoring, as well as scripting tools.  

In addition to that the CONTIGRA ComponentBuilder tool is used 
to produce the entire component. It is responsible for integrating 
all implementation parts. X3D documents can be loaded and 
displayed in a 3D window, parts can be selected and combined to 
be included in the component. Associations between nodes and 
fields of scene graph parts can be established, as described in the 
audio geometry example in section 4. The CoSceneGraph 
document will be automatically generated for the desired compo-
nent implementation. Editors allow the component description 
according to the CoSceneComponent schema. The interface 
document will be generated automatically, too. For creating 
compound components CONTIGRA SceneBuilder functionality can 
be used to arrange and wire various components. Eventually, all 
component documents can be packaged for distribution. 

The CONTIGRA SceneBuilder tool provides functionality for 
selecting 3D components and previewing them in a 3D window. 
They can be transformed and arranged to produce the desired VE 
or 3D application. Internally a compound CoSceneComponent 
instance is constructed, which stores the component transfor-
mation hierarchy. Subcomponents can be configured using 
parameter editors for standard parameter types. Additional 
specialized editors for a component are referenced within the 
Deployment part of the component interface and can be loaded as 
they are needed. Geometry parts can be visually selected and 
exchanged. Event wiring and component connections are 
established with a graphical link editor, which creates 
connections between parameters and methods. CoScene-
Component descriptions will be merged to one single CoScene-
Component document. The same applies to the implementation 
parts, which are assembled to form a complex X3D scene graph. 
For that purpose, references and conflicts are resolved and 
distributed parts integrated. The resulting scene can be either 
packaged into a new, compound component, using Component-
Builder functionality or a 3D application can be produced. In this 
case, the user may adjust typical scene parameters and define 
lights, viewpoints etc. In addition to the compound 
CoSceneComponent document, the internally constructed 
CoScene instance document also serves as an exchange format 
for the CONTIGRA SceneBuilder.  

Until this point there exists a declarative scene description 
including the compound component, one X3D scene graph, and 
external media and script files. Using transformation modules, 
these format independent descriptions can be translated to 
specific 3D formats such as Java3D or Shockwave3D. It is 
possible to produce different implementations from one high-
level description of an application. For that purpose Extensible 
Stylesheet Language transformations and the Document Object 
Model (DOM) interface are used. The XML descriptions are 
parsed and transformed to either a declarative 3D format such as 
VRML or to program code such as Java3D. The resulting 

document or application can be viewed within the appropriate 3D 
viewer, plug-in or 3D browser. When truly componentized X3D 
browsers will be available, it should be possible to directly 
render a X3D file and to load code modules for unknown profiles 
or nodes (such as the audio3D extension). Developing translation 
modules of the CONTIGRA SceneBuilder will be difficult 
especially for proprietary formats. First experiences with 3D 
technologies such as Viewpoint and Shockwave3D have shown, 
that a functionally equivalent one-to-one translation will not be 
possible in every case. 

6. CONCLUSION AND FUTURE WORK 
In this paper an architecture for the component-based 
development of VE and 3D user interfaces was introduced. The 
proposed multi-layered architecture is entirely based on 
declarative documents coded with XML Schema. The document-
based approach allows high-level descriptions, a visual, multi-
disciplinary authoring process, and the translation of the 
resulting documents to various 3D technologies. The CONTIGRA 
XML descriptions at least work on the specification level, thus 
contributing towards the standardization of interface elements 
and 3D world components. The separated description of 
geometry, behavior, and audio at scene graph level facilitates 
reuse of a component’s implementation. Through providing a 
level of abstraction at scene component level, high-level reuse is 
a major improvement in comparison with common scene graph 
based 3D technologies. 

Future work includes refinement of the CONTIGRA XML schemas. 
Behavior and audio scene graph extensions have to be realized as 
X3D profiles. The main activity will be the further development 
of the user interface builder tools along with translation modules 
to various, also proprietary 3D technologies. Performance issues 
also need to be solved. More 3D components and applications 
have to be built in order to evaluate the efficiency of the 
authoring process. Experts from other fields such as graphic and 
audio design should be involved, too. 
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