
CONTIGRA: An XML-Based Architecture
for Component-Oriented 3D Applications

Raimund Dachselt, Michael Hinz, Klaus Meißner
Dresden University of Technology, Department of Computer Science

Heinz-Nixdorf Endowed Chair for Multimedia Technology
D-01062 Dresden, Germany

{raimund.dachselt, michael.hinz, klaus.meissner}@inf.tu-dresden.de

ABSTRACT
Even though numerous Web3D technologies exist, most of them
do not support a high-level, multi-disciplinary authoring process.
Moreover, concepts of reuse are rarely provided. A component-
based approach is introduced with the CONTIGRA architecture
to construct interactive, three-dimensional applications, either
stand-alone or web-based. The approach is entirely based on
declarative XML documents describing the component imple-
mentation, its interface, as well as component configuration and
composition of 3D user interfaces and virtual environments.
Extensible 3D (X3D) is used as the scene graph basis. However,
the resulting applications can be translated to other 3D tech-
nologies, too. Another advantage of the approach is reuse both at
the implementation level and the higher abstract component
level. This paper introduces the overall architecture and the
XML schemas used for the component documents. It finally
outlines the associated authoring process and tools involved.

Categories and Subject Descriptors
H.5.2 [Information Interfaces]: User Interfaces – graphical
user interfaces (GUI), prototyping, standardization. I.3
[Computer Graphics]: I.3.6 Methodology and Techniques –
languages. I.3.7 Three-Dimensional Graphics – virtual reality.
D.2 [Software Engineering]: D.2.2 Design Tools and
Techniques – user interfaces. D.2.11 Software Architectures –
domain-specific architectures, declarative languages.

Keywords
Component-based development, 3D Components, 3D Widgets,
3D User Interfaces, Virtual Environments, Extensible 3D (X3D),
XML Schema, CONTIGRA.

1. INTRODUCTION
The acronym CONTIGRA stands for Component OrieNted Three-
dimensional Interactive GRaphical Applications. In this ongoing
research project [2,5] metaphors and interaction principles for
three-dimensional user interfaces are investigated. A declarative,

component-based architecture on the basis of X3D (Extensible
3D) [18] and XML (Extensible Markup Language) [19] was
designed for the construction of web-enabled, desktop Virtual
Reality applications and 3D virtual environments (VE).

Due to considerable improvements in 3D graphics hardware and
fast-evolving Internet technologies, the availability of 3D
technologies for consumer platforms increases. As a result, the
number of web-based three-dimensional applications in domains
such as e-commerce, product presentations, entertainment, and
virtual actors grows. By now a multitude of proprietary web 3D
formats is available. This impedes standardization, particularly
since most of the technologies are tailored to special application
domains. VRML [16] as the established Web3D graphics
standard is widely used. However, due to various problems it is
rarely used for enabling applications such as e-commerce sites.
X3D as the VRML successor promises to be more successful due
to the flexible XML-encoding, modularization through profiles
and smarter 3D browsers. However, no single 3D technology is
expected to dominate the Web3D arena in the near future.

Despite the difficulties in selecting an appropriate technology,
another major problem is the lack of guidelines, interaction
paradigms, and design standards for three-dimensional user
interfaces. Moreover, only few authoring tools exist, which are
often tailored to a specific Web3D format and application
domain. Concepts of reuse are mostly missing, which makes it
extremely difficult and tedious to author non-trivial interactive
3D applications. Projects are often developed from scratch and
involve a great deal of programming without reusing building
blocks. This excludes non-programmers from designing 3D
applications. Graphic designers, sound designers, and other
experts should contribute to authoring them, since such systems
inherently contain rich media elements. That is why rapid
prototyping and high-level visual authoring tools need to be
developed.

With regard to the current situation and the mentioned problems
we conceive our vision of an available repertoire of 3D
components, such as standardized 3D widgets. These interface
controls and VE building blocks should be easy to construct, to
configure, and to reuse in various projects in a component-
oriented fashion. The underlying component architecture should
not be code-centered, but instead employ a declarative,
document-centered approach, which facilitates readability, rapid
prototyping, and visual tool support. Authoring tools should
provide high-level views as an abstraction from scene graph
details, thus promoting multi-disciplinary development.
Applications should not depend on a specific 3D format to be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web3D’02, February 24-28, 2002, Tempe, Arizona, USA.

Copyright 2002 ACM 1-58113-468-1/02/0002…$5.00.

portable and adaptable to various platforms. Web3D and other
Internet media standards must be supported.

This paper is organized as follows: The next section relates our
work to existing approaches, followed by an introduction to the
overall architecture and CONTIGRA layers. The main part is
devoted to the XML-based implementation and the presentation
of the CONTIGRA markup languages. Thereafter the authoring
process is described in section 5 along with tools associated with
it. This is followed by a conclusion and outline of future work.

2. RELATED WORK
Until now there are only a few component approaches to
constructing interactive 3D applications, even though the usage
of component concepts for 3D graphics seems to be promising.
An overview of this comparatively new field of research and a
detailed classification of existing 3D component approaches is
given in [3]. Current component technologies are inherently
oriented towards code construction using programming
languages. None of the competing technologies such as CORBA,
DCOM or Enterprise Java Beans (EJB) is tailored to 3D
applications on the web. Up to now component technologies are
only rarely used in VE systems [1].

According to [3] 3D component approaches can be coarsely
divided into code-centered and document-centered solutions.
Among the first is the NPSNET-V system [1]. It primarily
supports the development of scalable, distributed VE. Java
components can be dynamically loaded across a network at
runtime. In addition to that, the proprietary component system
Bamboo [17] was designed, where code modules operate in a
cross-platform and cross-language manner [1]. The i4D archi-
tecture [11, 12] is a dedicated 3D component solution. It
introduces so called actors, high-level attributes, and actions to
modify them, which all together create an abstraction to scene
graphs. Components are realized as DLL/DSO, the layered archi-
tecture runs on various platforms and 3D APIs. Smart Virtual
Prototypes [15] are based on VRML and Java classes to define
simulation components consisting of user interface objects
(realized as VRML prototypes), interactor components (on the
client side) and virtual components (on the server side), both
implemented as Java classes. Since coding in one or the other
language is essential for all these approaches, they are not
suitable for non-programmers. The Three-dimensional Beans
approach [9] combining JavaBeans and Java3D takes that into
account. It provides the 3D Beanbox editor, used for visual
authoring and assembling of 3D Beans. Meta Beans [8]
supplement this concept. They are associated with 3D Beans and
encapsulate customizable interaction metaphors in components.
Abstractions to specific 3D toolkits and component technologies
are not provided with this approach. Recent developments within
this project also include an XML description language for 3D
Beans.

This shows a trend towards a declarative description of 3D
components. The Jamal declarative component framework [13] is
based on a flexible and expandable Component Interface Model.
The Bean Markup Language (BML) is being used for declarative
description of component connections. The isomorphisms
between VRML-Prototypes, X3D-documents, Java Beans, and
IDL described in [14] show the possibility to define component

interfaces and connections in an abstract way, which can be
translated to a specific implementation at a later point. This idea
influenced the CONTIGRA architecture. With 3dml, a higher-level
markup language for 3D interaction techniques and VE
applications was recently introduced [10]. 3dml supports
readability and rapid development. Since it is well suited for
encapsulating interaction techniques, it could probably be used in
addition to the CONTIGRA behavior graph (see section 4.1).

Among the declarative approaches one can also find early
extensibility mechanisms such as Open Inventor Nodekits and
VRML Prototypes, being limited to the respective format and
restricted in terms of configuration and distribution. The recent
X3D developments include advanced extensibility concepts.
Beside VRML prototypes the concept of profiles allows scene
graph extensibility and the component mechanism modula-
rization within X3D players. X3D profiles are nevertheless only
subsets of nodes, mainly for a certain application domain, but not
components in the sense of reusable building blocks. X3D does
not provide abstractions to scene graph level nor explicit
definition of three-dimensional component interfaces nor high-
level configuration and assembly. Since X3D is based on a well
established scene graph concept and extensible set of nodes, its
XML-encoding can be translated to other scene graph based
formats. The other reason for choosing this format as the basis
for the CONTIGRA scene graph encoding is the expected
standardization of X3D.

3. THE OVERALL ARCHITECTURE
The CONTIGRA approach comprises a 3D component concept that
is largely independent of implementation issues and allows easy,
declarative, and multi-disciplinary authoring of 3D applications.
It is based on structured documents describing the component
implementation, their interfaces, as well as the assembly and
configuration of 3D components to more complex interactive
applications.

3.1 Example of a Web3D Application
A short introduction of an application example from the
information visualization domain shall illustrate the different
development stages within the CONTIGRA architecture. Fig. 1
depicts a navigation technique for medium-sized trees, called
Collapsible Cylindrical Trees (CCT) [4]. Child nodes are
mapped on rotating cylinders, which will be dynamically
displayed or hidden according to the current path or sub-
hierarchy. A fast interaction technique allows a single-click
navigation to reach every node and open the associated web page
or perform some other action on it.

Figure 1. Web sitemap of the MMT research group using
the CCT visualization & navigation technique

3.2 Component Development Stages
A CONTIGRA component is not a binary executable, but defined as
an encapsulated component implementation based on declarative
scene graph documents plus a separated component interface
document. The development of a component-based three-
dimensional application as sketched above will demand activities
on different abstraction layers and development stages. Fig. 2
depicts the various stages and their associated tasks, resulting
files, and tools.

At the development level simple or compound 3D components
have to be implemented. Scene graph files, media assets, and
script files belong to the implementation of a component. People
involved at this stage are scene graph experts, programmers, and
3D designers. The same people create the component interface
using a component description language. Component functio-
nality, configurable parts, and parameters as well as rich meta
information are coded in this document. Thus the results of this
level are deliverable, functioning standard components in terms
of non-executable document files, such as a CCT wheel
component. Tools used are common XML editors, the Contigra
ComponentBuilder (see section 5), as well as scripting and
media authoring tools.

The next level, component distribution, assumes a set of
packaged components, where only the component interface is
visible and the implementation remains encapsulated. The
components can be distributed over the World Wide Web and
stored in databases. The associated task at this level is the
retrieval of suitable components. Project managers or web
engineers have to find the appropriate components for their
projects. A web portal provides query functionality and helps to
access desired components. Once the components are selected,
they can be deployed at the configuration and assembly level.
Typical tasks are the configuration, assembly, and connection of
components to build more complex 3D applications. People
involved at this stage can be non-3D-experts, for example project
managers, web engineers, and designers. The CONTIGRA
SceneBuilder tool (see section 5) is used to adapt the components
to special needs and to connect them. The results of this stage are
declarative documents describing the entire 3D application. Until
this point a neutral, essentially format-independent represen-

tation should be used, which can now be exported to a specific
3D technology, such as Java3D or X3D. The resulting application
can be viewed at runtime level within a 3D viewer. Adaptations
to current system performance or user preferences can be done at
runtime, too.

4. THE XML-BASED IMPLEMENTATION
After having introduced the basic architecture, this section
illustrates the implementation of the CONTIGRA concept using
markup languages coded with XML Schema [20]. Since a
homogeneous encoding is provided on all levels, this is a
consistent approach for all abstraction stages starting from scene
graph level up to the description of complex component
assemblies. In [3] advantages of using XML are described in
detail. Among them are platform independence, standardization,
interoperability with other Internet standards, availability of
tools, and document processing using the Document Object
Model [6] or XSL Transformations [21]. The hierarchical
structure predestines XML for scene graph encodings, as one can
see with X3D. XML Schema in particular makes it easy to
integrate the various markup languages on all CONTIGRA levels
through namespaces. In addition to that, data types, derived
types, substitution groups, and abstract types make it easier to
code high-level parameters and to employ object-oriented
concepts, e.g. for component classes.

4.1 Level 1 – CONTIGRA SceneGraph
To illustrate the different levels, the focus of the following
sections lies on the documents involved in the development
process along with their underlying grammars.1 Fig. 3 contains
the identified tasks of the development stages and shows the
associated XML documents with their schemas as well as other
connected resources. The documents within the shaded part
constitute a single 3D component.

The Contigra SceneGraph schema serves as a component
implementation language and integrates various scene graph,
media, and script files. The most important documents of the
implementation level are the scene graph documents. The X3D
XML encoding is used for describing the component geometry.
Though X3D (respective VRML) contains some behavior and
audio nodes, the scene graph is divided into different, separated
parts. These are basically specialized collections of nodes. They
are coded with separate grammars to solve problems currently
not addressed in X3D. In [7] Döllner and Hinrichs developed the
idea of separating geometry and interaction behavior in various
graphs. This concept is expanded to a separated 3D audio graph,
since spatial audio effects are not sufficiently provided by
VRML/X3D. Take for example the description of church
acoustics, including reverb, sound reflections etc. Using the
newly developed Audio3D Schema, this can be described
separately and could be reused for various similar church
geometries. The Behavior3D schema currently being developed
integrates existing X3D behavior nodes, adds new interaction
nodes and provides uniform access to external methods and
functions coded in script files, JARs etc. Both behavior and audio

1 The CONTIGRA Schemas can be found online under

http://www.contigra.com.

3D Viewer
(e.g. X3D Applet)Runtime Usage

Adaptation
Executable
3D Application

3D Viewer
(e.g. X3D Applet)Runtime Usage

Adaptation
Executable
3D Application

Description

Implementation

CONTIGRA
ComponentBuilder,

XML-, Media &
Programming Tools

Development =

Component
Interface

Implementation
Files

CCT

Description

Implementation

CONTIGRA
ComponentBuilder,

XML-, Media &
Programming Tools

Development =

Component
Interface

Implementation
Files

CCT

Distribution Selection
Retrieval

Component
Database,

Web Interface
Packaged

3D-Components
Distribution Selection

Retrieval

Component
Database,

Web Interface
Packaged

3D-Components

CONTIGRA
SceneBuilder

(3D UIB)

Configuration
& Assembly

Connection
Assembly

Configuration

Assembled
3D Application

Configured
Components

CONTIGRA
SceneBuilder

(3D UIB)

Configuration
& Assembly

Connection
Assembly

Configuration

Assembled
3D Application

Configured
Components
Configured

Components

Level Result (Documents) ToolsTasks
Component-Level Result (Documents) ToolsTasks
Component-

Figure 2. CONTIGRA levels with associated tasks and tools

graph are planned to become X3D profiles as soon as the X3D
Schema has reached a mature status. References to external
video, sound, and script files are embodied in the respective
nodes.

The scene graph structures can either reside in a large document
containing all parts of a component or in separate documents,
which is preferable in terms of reuse on the implementation
level. All nodes to be used later as configurable parameters of a
component should be named using the DEF-mechanism provided
by X3D. To integrate all implementation parts and to reference
only the required sub scene graphs, an XML document coded
with the CoSceneGraph schema is used. It serves as a flexible
wrapper to the pieces of an implementation.

Fig. 4 shows the structure of this grammar2. A CoSceneGraph
instance document contains a Header with meta information
about the developer, company, version etc. The following
optional parts Geometry, Audio, and Behavior contain references
to different sub scene graphs of the respective type. The
following extract from the CCT example application illustrates,
how parts of the scene graph are referenced using XLink with
XPointer syntax.

<Geometry>
 <CoSceneGraphFile xlink:href="dial.xml#xpointer
 (//Group[@DEF='DialGeometry'])" xlink:label="DialGeometry"/>
 <CoSceneGraphFile xlink:href="item.xml#xpointer
 (//Group[@DEF='ItemGeometry'])" xlink:label="ItemGeometry"/>
 …
</Geometry>

2 In the diagrams some parts are left out for space reasons.

Dashed lines depict optional elements, attributes are not
included. The symbol with squares in a row denotes a sequence
of elements, squares in a column stand for the content model
All, whereas the switch indicates a choice of elements.

Alternatively the appropriate group node could be included as an
element. The following section GraphLinks establishes
connections between the different scene graph parts. To stick to
the church example, it is necessary to associate the simplified
audio geometry of a church (e.g. some simple boxes) to the real
detailed geometry. To avoid hard coding this association in either
of the documents, links are stored under the GraphLink element.
AttributeLinks are similar to VRML routes, since they connect
fields. DependenceLinks establish links between nodes. If the
source node is copied, deleted, or not rendered at all, the same
actions are performed on the linked node. During the processing
of a CoSceneGraph instance document all scene graph parts will
be collected and internally stored as only one X3D scene graph.
For this component implementation an interface document is
written on the next level. Using enhanced X3D, the CONTIGRA
SceneGraph level provides an abstraction to proprietary 3D
formats, since documents can be translated to specific Web3D
formats as needed.

Implementation

Tasks CONTIGRA Documents Other Resources

Description
Configuration

Assembly
Linking

XML Schemas

Integration

CONTIGRA
SceneGraph

X3D,
Audio3D,

Behavior3D

CONTIGRA
SceneComponent

CONTIGRA
Scene

Audio
Graph

Behavior
Graph

Geometry
Graph

Integrative
Document

<CoSceneGraph>
Sound

JAR,
Scripts
Video,
Images

X3D Profiles

<CoSceneComponent>

Component Interface Document Icon

Editors

<CoScene>

3D Scene Description

Child
Components

Figure 3. XML schemas and documents of the different CONTIGRA levels

CoSceneGraph

Header

csg:HeaderType

Info

Developer

Geometry

1..∞

CoSceneGraphFile

x3d:Group

Audio

∞1..

CoSceneGraphFile

cag:AudioGroup

Behavior

∞1..

CoSceneGraphFile

csg:BehaviorGroup

GraphLinks

csg:GraphLinksType

AttributeLinks

DependenceLinks

Figure 4. Structure of XML schema CoSceneGraph

Figure 5. Structure of XML schema CoSceneComponent

4.2 Level 2 – CONTIGRA SceneComponent
Contigra SceneComponent is the core markup language of the
proposed architecture. It is a component description language
used to define interfaces of a component separated from its scene
graph implementation. As such, it provides an abstraction level
and is well suited for distribution, search and retrieval as well as
component deployment. Each 3D component has one associated
CoSceneComponent document. A number of tasks shown in Fig.
3 are performed in the various sections of the interface
document. Thus a CoSceneComponent instance contains the
component’s documentation, its application purpose, license and
deployment information, the description of configurable
geometry and other parameters, offered methods of the
component, and references to child components. Fig. 5 depicts
the most important elements of the CoSceneComponent schema.

4.2.1 Component Classes and the Concept of
Document-Based Inheritance
Before explaining the elements of the grammar, the idea of
document-based inheritance is introduced. Whereas typical
interface description languages only describe methods and
parameters of a component, the CoSceneComponent grammar
combines interface declarations with a specific component
configuration. Accessible parts, parameters, and methods are not
only listed, but values are already assigned to them. That means,
one CoSceneComponent document describes one specific
instance of a component as an instance of this class of compo-
nents. Consequently, a document serves as a prototype, which
can be copied and partly changed to produce another component
of that class. Take for example the wheels of the CCT
application, where each wheel is derived from another one, just

CoSceneComponent

Header

csc:HeaderType

Info ComponentClass

Developer

Documentation

Deployment

csc:DeploymentType

AuthoringSupport

Icon

Editor

Semantics

LicenceModel

Implementation

File

csg:CoSceneGraph

ParameterList

csc:ParameterListType

Parameter

∞1..

GeometryList

csc:GeometryListType

Geometry

∞1..

MethodList

csc:MethodListType

Method

∞1..

csc:MethodType

Result

Parameters

∞0..

Subcomponents

csc:SubcomponentsType

Transform

∞0..

CoSceneComponentFile

csc:CoSceneComponent

∞1..

BlockedParameters

ComponentLinkList

csc:ComponentLinkListType

ComponentLink

∞1..

with a changed material parameter and item hierarchy. The
CoSceneComponent grammar provides a kind of generic super
class, whereas instance documents implement specific sub
classes. The following header extract from a blue CCT wheel
shows, how the prototypic document serving as a basis is being
referenced using the referenceDocument attribute.

<Info id="CCCT3" name="CCT-Wheel_blue" lastRevision=
 "2001-09-12" version="1.0">

<ComponentClass xsi:type="CoCCTComponent"
 referenceDocument="CCT-WheelComponent_Proto"/>

</Info>

To avoid arbitrary component classes and an uncontrolled growth
of documents, the element ComponentClass was introduced with
a typed component hierarchy. This extensible hierarchy contains
classes such as CoComponent, CoWidgetComponent, CoSlider-
Component, CoAvatarComponent etc. It was developed to bring
forward standardization efforts of three-dimensional user
interfaces.

4.2.2 Component Description
The Header and Documentation elements describe a component
textually. They are used for search and retrieval. Within the
header the Info element contains basic information such as
component id, name, lastRevision, version, certificate, and the
component class. The class concept is explained later. The
Developer section provides information about the author,
company etc. Within the element Deployment information is
given on how to use this component and how to author it.
AuthoringSupport contains links to specialized editors for this
component as well as an iconic representation for use in visual
authoring tools. The LicenseModel element is used for business
aspects and billing issues for commercial components. Semantics
contains Hints with attributes such as mayContain, suitedFor,
combinedWith, and complements. Though difficult to formalize,
these hints serve as decision guidance, for example which kind of
3D menu to use in an application.

4.2.3 Component Interface and Configuration
The Implementation part establishes the connection to component
implementations. It is basically a pointer to a CoSceneGraph
element, which will usually reside in a separate file. References
to named scene graph parts (e.g. exchangeable geometry) will
always be resolved via this link to a CoSceneGraph document.
The description of component functionality and configurable
high-level parameters is included in the following three parts
GeometryList, ParameterList, and MethodList of the interface
document. All visible and exchangeable geometry parts of the
component are listed as Geometry elements within the
GeometryList.

<GeometryList>
<Geometry name="CylinderGeometry" changeMode=
 "configurationTime" authorRole="design"
 description="Geometry of a rotating cylinder"
 nodeRef="DialGeometry"/>

 <Geometry name="ItemGeoemtry" changeMode=
 "runtime" authorRole="design" description="Geometry of
 a menu item" nodeRef="ItemGeometry"/>
 …
</GeometryList>

This excerpt from a CCT-Wheel instance references two named
parts of the scene graph. Notice the abstraction from scene graph
details at this point. The link to the real sub scene graphs
representing this geometry is only established via the
CoSceneGraph document. It contains scene graph references and
consequently finds the matching node names, defined with the
DEF attribute. Attributes name and description are used in
authoring tools. The attribute changeMode may contain the
values never, configurationTime, and runtime. They indicate,
that a part cannot be changed at all, can only be modified at the
configuration level, or can be changed even at runtime. A value
set to configurationTime or runtime is comparable to an eventIn
setting in VRML. With the help of the authorRole attribute it can
be described, which person can modify which part or parameter
of the component. This supports a multi-disciplinary authoring
process. Possible values are view, design, program, and
doEverything, which represent different access rights.

With the ParameterList containing an arbitrary number of
Parameter elements, all other exposed high-level parameters are
described, providing an abstraction to the scene graph level. The
excerpt shows typical parameter definitions. Note, that the
attributes of element Parameter are the same as of the element
Geometry with the addition of the bindable and fieldRef
attributes explained below.

<ParameterList>
<Parameter name="WheelMaterial" changeMode=
 "configurationTime" authorRole="design" bindable="false"
 description="material of the cylinder" nodeRef="CylinderMat"/>
…
<Parameter name="ItemFont" changeMode="configurationTime"
 authorRole="design" bindable="false" description="text font of
 menu items" nodeRef="ItemTextFont" fieldRef="family">

 <cpt:CoString>Arial Narrow</cpt:CoString>
 </Parameter>

<Parameter name="Width" changeMode="runtime"
 authorRole="program" bindable="true" description="calculated
 width of the cylinders">

 <cpt:CoFloat>12.0</cpt:CoFloat>
 </Parameter>
 …
</ParameterList>

The parameter “WheelMaterial” references a material node in
the scene graph. The provided new material settings are left out
for space reasons. Parameter “ItemFont” is an example for a
parameter referencing a field within a scene graph, in this case
the family field of a named FontStyle node, which will be
substituted by the new given value. The attribute fieldRef was
introduced for such references. Parameter “Width” is an example
for an exposed parameter not associated with parts of a scene
graph at all. The width of a CCT wheel is calculated
automatically. Since the new attribute bindable is set to true, this
parameter can be linked to others, which will be notified after a
change has happened. It resembles a VRML eventOut. The
content model for a Parameter is defined using the XML Schema
any element, which allows the flexible insertion of various types.
As one can see with the elements CoString and CoFloat, basic
parameter types are already provided.

Finally the element MethodList contains all offered methods of a
component. Method elements contain the attribute name, which

is matched with corresponding parts of the behavior graph, a list
of typed Parameters for that method, and a possible return value
Result. In the CCT example methods such as CollapseWheel and
ExpandWheel are defined, which can be called from the parent
component. It is to be mentioned, that for parameters with
changeMode set to configurationTime or runtime get- and set-
methods are automatically being generated.

4.2.4 Component Assembly and Linking
The last part of a CoSceneComponent document is used to
describe Subcomponents of a compound component. Since this
element is optional, it can be left out for simple components such
as the CCT wheels. However, a compound component contains a
transformation hierarchy of sub components. Every Transform
element contains typical transformation attributes and a reference
to a CoSceneComponent instance file, as seen in this example.

<Subcomponents>
<Transform translation="1.0 0.0 0.0">
 <CoSceneComponentFile>
 CCT-WheelCoRed.xml
 </CoSceneComponentFile>

 </Transform>
 <Transform translation="11.0 0.0 0.0">
 <CoSceneComponentFile>
 CCT-WheelCoBlue.xml
 </CoSceneComponentFile>
 </Transform>
 …
 <ComponentLinkList>…</ComponentLinkList>
</Subcomponents>

While processing a compound CoSceneComponent instance, the
parameter declarations of all sub components are collected and
added to the parameter list of the container component. To avoid
this behavior, parameters of sub component can be explicitly
prevented from being accessible from the parent component
interface using the BlockedParameters element. The
ComponentLinkList establishes links between exposed parame-
ters of different components, possibly involving a method call.

4.3 Level 3 – CONTIGRA Scene
CONTIGRA Scene serves as a high-level component integration
language. An instance document of this grammar represents a
declarative description of an interactive VE or 3D application,
which is ready for translation into an executable 3D format. It
contains a link to a compound component and general scene
parameters. Fig. 6 shows a schema diagram of the CoScene
grammar. A scene consists of a Header element with typical meta
information. The Documentation part contains not only the
description of a 3D scene, but also a Help element for application
help information. Up to the SceneComponent level all coding
was basically format independent. The SystemRequirements
section establishes the connection of the compound scene
component to a specific runtime environment. This includes
hardware requirements such as Processor, Memory, and
InputDevices / OutputDevices. Estimated PerformanceCosts and
the required minimal FrameRate are also coded in this section. In
addition to that, WindowSize demands and Player hints for the
integration into web pages are described here. This section can
be easily extended to include parameters such as required
network connection etc.

The element SceneParameters describes typical scene character-
ristics, such as Camera, ViewpointList, and LightList. In addition
to that, the element AudioScene defines global audio parameters
for the Environment or the Listener’s initial position. The
element RootComponent eventually contains a reference to a
CoSceneComponent instance. Usually this instance will contain
subcomponents. That is to say, the compound component
represents the whole 3D application without the context of a
specific runtime environment or 3D format.

5. AUTHORING PROCESS AND TOOLS
TO PRODUCE CONTIGRA DOCUMENTS
In sections 3 and 4 the different levels of the overall architecture
were explained along with the developed XML schemas and
documents. This section illustrates, how the authoring process
and the tools involved are conceived. The CONTIGRA Component-
Builder and SceneBuilder tools are currently under development.

CoScene

Header

cos:HeaderType

Info

Developer

Documentation

SystemRequirements

SceneParameters

Camera

AudioScene

Listener

Environment
ViewpointList

LightList

RootComponent

CoSceneComponentFile

csc:CoSceneComponent

Figure 6. Structure of XML schema CoScene

Since detailed results are not yet available, this section only
explains their conception. Both tools are part of a complex
authoring environment, a 3D user interface builder. A
deliverable component consists of XML scene graph documents,
media and script files, the integrating CoSceneGraph instance
document as well as the component interface declaration. To
create it, component developers are using external editors for
X3D and media authoring, as well as scripting tools.

In addition to that the CONTIGRA ComponentBuilder tool is used
to produce the entire component. It is responsible for integrating
all implementation parts. X3D documents can be loaded and
displayed in a 3D window, parts can be selected and combined to
be included in the component. Associations between nodes and
fields of scene graph parts can be established, as described in the
audio geometry example in section 4. The CoSceneGraph
document will be automatically generated for the desired compo-
nent implementation. Editors allow the component description
according to the CoSceneComponent schema. The interface
document will be generated automatically, too. For creating
compound components CONTIGRA SceneBuilder functionality can
be used to arrange and wire various components. Eventually, all
component documents can be packaged for distribution.

The CONTIGRA SceneBuilder tool provides functionality for
selecting 3D components and previewing them in a 3D window.
They can be transformed and arranged to produce the desired VE
or 3D application. Internally a compound CoSceneComponent
instance is constructed, which stores the component transfor-
mation hierarchy. Subcomponents can be configured using
parameter editors for standard parameter types. Additional
specialized editors for a component are referenced within the
Deployment part of the component interface and can be loaded as
they are needed. Geometry parts can be visually selected and
exchanged. Event wiring and component connections are
established with a graphical link editor, which creates
connections between parameters and methods. CoScene-
Component descriptions will be merged to one single CoScene-
Component document. The same applies to the implementation
parts, which are assembled to form a complex X3D scene graph.
For that purpose, references and conflicts are resolved and
distributed parts integrated. The resulting scene can be either
packaged into a new, compound component, using Component-
Builder functionality or a 3D application can be produced. In this
case, the user may adjust typical scene parameters and define
lights, viewpoints etc. In addition to the compound
CoSceneComponent document, the internally constructed
CoScene instance document also serves as an exchange format
for the CONTIGRA SceneBuilder.

Until this point there exists a declarative scene description
including the compound component, one X3D scene graph, and
external media and script files. Using transformation modules,
these format independent descriptions can be translated to
specific 3D formats such as Java3D or Shockwave3D. It is
possible to produce different implementations from one high-
level description of an application. For that purpose Extensible
Stylesheet Language transformations and the Document Object
Model (DOM) interface are used. The XML descriptions are
parsed and transformed to either a declarative 3D format such as
VRML or to program code such as Java3D. The resulting

document or application can be viewed within the appropriate 3D
viewer, plug-in or 3D browser. When truly componentized X3D
browsers will be available, it should be possible to directly
render a X3D file and to load code modules for unknown profiles
or nodes (such as the audio3D extension). Developing translation
modules of the CONTIGRA SceneBuilder will be difficult
especially for proprietary formats. First experiences with 3D
technologies such as Viewpoint and Shockwave3D have shown,
that a functionally equivalent one-to-one translation will not be
possible in every case.

6. CONCLUSION AND FUTURE WORK
In this paper an architecture for the component-based
development of VE and 3D user interfaces was introduced. The
proposed multi-layered architecture is entirely based on
declarative documents coded with XML Schema. The document-
based approach allows high-level descriptions, a visual, multi-
disciplinary authoring process, and the translation of the
resulting documents to various 3D technologies. The CONTIGRA
XML descriptions at least work on the specification level, thus
contributing towards the standardization of interface elements
and 3D world components. The separated description of
geometry, behavior, and audio at scene graph level facilitates
reuse of a component’s implementation. Through providing a
level of abstraction at scene component level, high-level reuse is
a major improvement in comparison with common scene graph
based 3D technologies.

Future work includes refinement of the CONTIGRA XML schemas.
Behavior and audio scene graph extensions have to be realized as
X3D profiles. The main activity will be the further development
of the user interface builder tools along with translation modules
to various, also proprietary 3D technologies. Performance issues
also need to be solved. More 3D components and applications
have to be built in order to evaluate the efficiency of the
authoring process. Experts from other fields such as graphic and
audio design should be involved, too.

7. REFERENCES
[1] Capps, M.; McGregor, D.; Brutzman, D.; Zyda, M.:

“NPSNET-V”. In IEEE Computer Graphics and
Applications, Vol. 20, No. 5, 2000, 12-15.

[2] CONTIGRA Project web pages: http://www.contigra.com

[3] Dachselt, R.: “Contigra - Towards a Document-based
Approach to 3D Components”, Workshop proceedings
"Structured Design of Virtual Environments and 3D-
Components" of the ACM Web3D 2001 Symposium,
Paderborn, 2001.

[4] Dachselt, R.; Ebert, J.: “Collapsible Cylindrical Trees: A
Fast Hierarchical Navigation Technique”. To appear in:
Proceedings of the IEEE Symposium on Information
Visualization (InfoVis 2001), San Diego, October 2001.

[5] Dachselt, R.: “CONTIGRA: A High-Level XML-Based
Approach to Interactive 3D Components”, SIGGRAPH 2001
Conference Abstracts and Applications, Los Angeles,
August 2001, 163.

[6] Document Object Model (DOM): http://www.w3.org/DOM/

[7] Döllner, J.; Hinrichs, K.: “Interactive, Animated 3D
Widgets”. In IEEE Proceedings of CGI '98, 1998, 278-286.

[8] Dörner, R.; Grimm, P.: “Customizable Interactions in 3D
Web Applications with Meta Beans”. In Proceedings of the
Web3D 2001 Symposium, Paderborn, Germany, 2001, 127-
134.

[9] Dörner, R.; Grimm, P.: “Three-dimensional Beans –
Creating Web Content Using 3D Components in a 3D
Authoring Environment”. In Proceedings of the Web3D-
VRML 2000 Symposium, Monterey, USA, 2000, 69-74.

[10] Figueroa, P.; Green, M.; Hoover, H. J.: “3dml: A Language
for 3D Interaction Techniques Specification.” Short
presentation at Eurographics 2001, Manchester, United
Kingdom, September 2001.

[11] Geiger, C.; Paelke, V.; Reimann, C; Rosenbach, W.: “A
Framework for the Structured Design of VR/AR Content”,
In Proceedings of VRST 2000, October 2000.

[12] Geiger, C.; Reiman, C.; Rosenbach, W.: “Design of
Reusable Components for Interactive 3D Environments“. In
Proceedings of the Workshop on Guiding Users through
Interactive Experiences, Paderborn, Germany, April 2000.

[13] Rudolph, M.: “Jamal: Components Frameworks and
Extensibility”. URL:
http://www.web3d.org/TaskGroups/x3d/lucidActual/jamal/J
amal.html, 1999.

[14] Rudolph, M.: “X3D Components”. URL:
http://www.web3d.org/TaskGroups/x3d/lucidActual/X3DCo
mponents/X3DComponents.html, 1999.

[15] Salmela, M.; Kyllönen, H.: “Smart Virtual Prototypes:
Distributed 3D Product Simulations for Web based
Environments”. In Proceedings of the Web3D-VRML 2000
Symposium, Monterey, USA, 2000, 87-93.

[16] The VRML Consortium Inc.: “The Virtual Reality Modeling
Language – International Standard ISO/IEC 14772-1:1997”,
1997, URL: http://www.web3d.org/
technicalinfo/specifications/vrml97/index.htm

[17] Watsen, K.; Zyda, M.: “Bamboo - A Portable System for
Dynamically Extensible, Real-time, Networked, Virtual
Environments”. In Proceedings of the IEEE VRAIS’98,
Atlanta, Georgia, 1998, 252-259.

[18] Web3D Consortium: “X3D: The Virtual Reality Modeling
Language - International Standard ISO/IEC 14772:200x”,
URL: http://www.web3D.org/TaskGroups/x3d/specification/

[19] Extensible Markup Language (XML):
http://www.w3.org/XML/

[20] XML-Schema: http://www.w3.org/XML/Schema

[21] XSL Transformations (XSLT):
http://www.w3.org/TR/xslt11

