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Abstract

TouchNoise is a multitouch interface for creative work with noise. It allows the

direct and indirect manipulation of sound particles which are added up in the panning

and frequency space. Based on the mechanics of a multi-agent system and flocking

algorithms, novel possibilities for the creation and modulation of noise and harmonic

spectra are supported. TouchNoise underwent extensive revisions and extensions

throughout a 3-year iterative development process. This article gives a comprehensive

overview of the final TouchNoise concept, its mapping approach and interaction from
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which a variety of unique sonic capabilities derives. Based on our experiences with a

fully functional prototype implementation this article focusses on the systematic

exploration and discussion of these novel sonic capabilities and corresponding playing

techniques which differ strongly from traditional synthesis interfaces.

Multitouch, Agents, Noise

The advent of multitouch technology marks the beginning of a success story that

made powerful computing technology ubiquitous. Devices can be found in many form

factors from small watches, smartphones and tablets up to machine control panels,

tables and walls. Due to the unified input and output space of an interactive surface,

interaction with the contents on screen became more direct than through peripheral

devices such as mouse and keyboard—users tap the visuals directly instead of

performing input via off-screen devices and navigating pointers to the place of

interaction. Touch displays offer a dynamic design space not only for custom graphical

user interfaces and new interface widgets, but also for bimanual and gestural interaction

techniques and multi-user settings that were formerly impossible or impractical. Along

the lines of touching the data directly to exert an effect on it, interactive visualizations

provide access beyond the traditional reliance on buttons, sliders etc. In the field of

musical human-computer interaction, multitouch technology inspired many concepts

and interface approaches that exploit new ways to access sound synthesis, sequencing

and generative music systems.

With increasingly powerful computing technology a new type of digital musical

instruments, the active musical instrument, emerged (Chapel 2003). Such instruments do

not require the player to trigger each musical event (e.g. note) individually. They play

autonomously in realtime. The player’s role is to direct this process in a musically

meaningful way. Among the numerous instances, we can name just a few examples
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here. A typical representative is the Reactable interface (Geiger, Alber, Jordà, and Alonso

2010), a multitouch and tangible interface for sound synthesis and sequencing. Its

technical framework has been adopted in the tabletop algorithmic composition system

ReacTacT (Ó Nuanáin and O’Sullivan 2014). CollideFx is a multitouch patching

environment by Gnegy (2014) for realtime sound synthesis and effects processing. Lopes

et al.’s study with a multitouch DJing application attests an increase of interaction speed

compared to a purely virtual (laptop) setup (Lopes, Ferreira, and Pereira 2011). The

NodeBeat app (Sandler and Windl 2013) is a dynamic sequencer on the cusp of an

interactive ambient music generator like several smartphone apps by Eno and Chilvers

(2011, 2014).

Our system TouchNoise (Berndt, Al-Kassab, and Dachselt 2014) is a further example

of a multitouch-based active musical instrument. It explores the range of perspectives in

the creation of and interaction with stereophonic noise spectra based on an interactive

particle system that is equipped with algorithms for different motion behaviors

including Brownian motion, flocking, and flow fields. Multitouch gestures do not only

set the parameters of these behaviors, but allow for directly influencing particles in

various ways, such as exerting magnetic and repellent forces.

Multi-agent and particle systems have been the basis of several musical interfaces.

Kuhara and Kobayashi (2011) present a kinetic particle synthesizer for mobile

multitouch devices. Photophore is a synthesizer that applies a flocking algorithm to

modulate up to 100 oscillators and create natural chorus effects (Dika 2014). SwarmSynth

uses flocking to control a bank of oscillators in a 5D space (volume, pitch, pan,

resonance, and noise), diversify their modulations, and create lively sounds (Hargreaves

2003). Orbits is a generative music interface that is based on an intuitive simulation of

the movement of orbs and gravitational forces between them (Vera 2011). A deeper

discussion of the use of interactive swarming in an improvisational music context is

3



delivered by Blackwell (2007). Artistic examples and C++ libraries for swarm-based

music generation are provided by Bisig and colleagues in the Swarms project.1 A more

general discussion of the use of particle systems in audio applications—primarily

addressing soundscapes (e.g. for games), DSP effects and granular synthesis—is given

by Fonseca (2013). The SuperCollider Live Spatialization System (SCLiss) is a typical

example that utilizes a particle system and certain motion characteristics such as

Bownian motion, simple harmonic motion, and orbital motion (Pérez-López 2014). The

author further provides a more dedicated state of the art review of spatialization

systems. A further example of flocking-based sound spatialization is Kim-Boyle’s (2008)

spectral spatialization approach that utilizes the Boids algorithm by Reynolds (1987,

2007) and derives a (non-interactive) visualization similar to that in TouchNoise.

TouchNoise adopts such concepts in its multi-agent system of sound particles which

is likewise based on the Boids algorithm, Brownian motion and further methods (see

section “TouchNoise: An Overview”). Its conceptual core and most distinguishing

aspect lies in the direct multitouch interaction with the particle system, the variety of

mechanisms to influence the particles and the range of sonic capabilities that the

mapping of input gestures to sonic reactions exploits thereby. This article contributes a

systematic discussion and reflection on the novel and exciting prospects this approach

allows with regard to sound aesthetics and sound interaction.

Throughout music history the role of noise as a shapeable musical material gained

in importance. Drummers and percussionists developed a great mastery in the

rhythmical use of differently colored noise spectra and established various sophisticated

playing techniques. Noise became an important element in experimental music and

musique concrète since the early 20th century. The era of electronic music introduced

various noise-based effect sounds. The growing number of ever more flexible synthesis

1http://www.zhdk.ch/index.php?id=icst_swarms_e, last access: August 2016.

4

http://www.zhdk.ch/index.php?id=icst_swarms_e


tools consolidated noise as an omnipresent sound material in electronic music.

Noise modulation is commonly based on stochastic signals synthesizing a somehow

colored inharmonic frequency spectrum. Filters are then applied to further refine this

spectrum. More complex frequency spectra, in fact any recorded sound, can be

introduced via sampling and granular synthesis. All these techniques are well

established and proved their practical worth over several decades of application. When

looking at how they are used in music making and how the corresponding synthesis

tools are handled, we recognize a prevalence of indirect interaction concepts. Sound

manipulations are achieved by synthesis patch editing and parameter modifications of

frequency, amplitude and filters plus certain distortion and waveshaping effects, all

controlled via traditional control elements such as knobs, faders, and buttons. The

mental effort of translating these controls to sounds in terms of predictive knowledge

and usability is relatively high. This constitutes the motivation behind several research

and development activities in musical human-computer interaction throughout the last

decades in finding better mappings of control structures to sound synthesis (Hunt and

Wanderley 2002) and reducing the dimensionality of the input space (Goudeseune 2002).

With TouchNoise we were striving for a more direct and immediate interaction to

foster the creative and nuanced work with noise spectra and to provide a live

performable instrument that opens up new perspectives for this purpose. Therefore,

TouchNoise exploits the multitouch display as dynamic visual interaction domain and

the particle system as basis for both, sound generation and dynamic visualization. User

interaction becomes more direct as it takes place within this visualization of the sound,

directly at the particles to be affected. The spatiality of the interaction domain parallels

the spatiality of the particle system and its corresponding sound structures: the

stereophonic frequency spectrum. As a close relative to this we see the “explorative

synthesis interface” of the CataRT system (Schwarz, Beller, Verbrugghe, and Britton
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2006). It places its sound material (grains for concatenative synthesis) as points in a

two-dimensional descriptor space; triggering its playback is done by tapping into the

space at or close to the sound material. Even though different in virtually every other

aspect, TouchNoise and CataRT feature a similar kind of directness in accessing (or, in

case of TouchNoise, affecting) their sound units by interacting in close proximity to their

visual representation on screen.

As a musical interface TouchNoise underwent a development process in which we

pursued the following general goals, based on (McDermott, Gifford, Bouwer, and Wagy

2013). The instrument’s basic concept should be easy to understand, supported by a

direct correlation of auditory and visual output. Basic interactions should be very direct

with no practical learning hump. Mastery of the instrument’s full functionality exploits

increasingly varied and complex sound patterns (open-endedness for long-term

engagement, see Wallis et al., 2013) and demands the player to develop advanced, more

nuanced gestures, and playing techniques (layered affordance). The visual impression

should be well suited for live projection on-stage and roughly promote comprehension

and virtuosity to the audience.

In the first, exploratory development phase we implemented the basic mapping and

interaction concepts (Berndt, Al-Kassab, and Dachselt 2014). In practical tests and demo

sessions (mainly with experts in human-computer interaction) we explored the sonic

capabilities of the approach, gathered usability experiences, and collected user feedback

for substantial revisions and extensions during the second development phase (Berndt,

Al-Kassab, and Dachselt 2015). In section “TouchNoise: An Overview” we summarize

the final concept, functionalities and technical implementation of TouchNoise. A

comprehensive technical description is drawn by Al-Kassab and Berndt (2015). Section

“The Sound of TouchNoise” then provides a systematic deduction and discussion of the

various novel sonic properties that TouchNoise opens up through its specific mapping
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and involvement of interactive multi-agent, flow field, and flocking mechanics. Such

comprehensive analysis could not be given by previous, more technical publications. It

marks the main contribution of this article and completes our series on the TouchNoise

interface.

TouchNoise: An Overview

The basis of TouchNoise is a relatively simple visualization of the stereophonic

frequency spectrum: The vertical axis represents frequency (up/down, high/low), the

horizontal axis represents panning (left/right). A sine oscillator with a certain frequency

and stereo position is visually represented as point on this plane and further referred to

as particle. The plane is called the particle playground. When a particle moves along the

horizontal axis, it changes its position in the stereo sound field. Movement along the

vertical axis means the particle changing its frequency (between 20Hz at the bottom and

20kHz at the upper edge of the playground). Usually, multiple particles are present on

the playground and add up to the stereophonic frequency spectrum. The particles are

not static but by default perform Brownian motion (Nelson 2001) on the playground.

The user/player can interactively add and remove particles and exert various influences

on their motion, distribution and dynamics via multitouch gestures on the playground

directly at the particles. This transforms the playground into an interactive visualization.

(a) Drag mode. (b) Magnetic mode. (c) Repel mode. (d) Accentuate mode.

Figure 1. Modes of direct touch interaction with the sound particles.
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Different functions can be assigned to touch events, see figure 1. Thereby, it is

possible to drag particles throughout the playground, attract and repel them to and from

the touches, and accentuate their amplitude. Combinations of these functions are also

possible, e.g. to attract particles and accentuate them when they come into a certain

range. The radius of each effect can be set individually. Furthermore, it is possible to

assign touch events with the creation or deletion of particles at and around the touch

position. With the exception of accentuation, all interactions affect the particle

distribution and (amplitude) mixing and take place directly within the stereophonic

frequency spectrum or its visual representation on the touchscreen, respectively.

An upper and lower bar delimit the frequency axis of the particle playground and

can be dragged to any position between 20Hz and 20kHz. The decision to achieve

band-limiting in this way derives from experiments with the first prototype. The

playground’s vertical axis did initially range from 60Hz to 3200Hz. We soon realized

that many interesting sound effects would go beyond this and successively increased the

range. Even the borders of human perception can be interesting in a productive way as

they allow artists to work with perceptual fading, i.e. letting particles disappear by

leaving the perceivable range and fade in by coming back into it. The sound sample

“Magnetic chords” on project page2 gives a typical example.

Our main design goal with the TouchNoise interface was facilitating the direct

interaction with this stereo noise spectrum. The TouchNoise interface is shown in

figure 2. An accompanying demo video on the project page shows the interface at work.

Nonetheless, there is still a number of indirect interactions in order to control the general

characteristics of all particles. Two parameters influence the Brownian motion. The step

width determines the particles’ speed and the Brownian angle delimits the maximum

rotation after each step. These two parameters set the dynamic behavior of the noise

2http://www.zemfi.de/research/touchnoise/
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Figure 2. A screenshot of TouchNoise’s multitouch user interface. A frequency band has an active
drag function. Accentuation and magnetic mode are active for direct touch interaction within the
particle playground. The radial particle menu is also opened; it can be dragged freely over the
screen and is minimized when put at the border or flicked to it.

spectrum (e.g. static, slowly evolving, or brisk). A lifetime slider sets the timespan that

each particle exists on the playground before being deleted automatically. A further

slider allows the creation and deletion of particles at random positions.

(a) Frequency band
drag mode.

(b) Magnetic frequency
band.

(c) Repulsive frequency
band.

Figure 3. Modes can be assigned to frequency bands.

The touch functions (drag, magnetic, repel, and accentuate, see figure 1) can,

furthermore, be assigned to whole frequency bands (rows of the playground, see
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figure 3) either through bimanual touch gestures on a “piano bar” at the right border of

the screen or by using TouchNoise’s MIDI connectivity. In the latter case, a MIDI

keyboard can be used to trigger the frequency bands. When activated, a frequency band

exerts the same effects as the corresponding touch function, i.e. it attracts or repels

particles above and below within a certain radius, accentuates particles crossing the

band, or holds them captive. The number of frequency bands and their size determine

the discrimination of the frequency axis, from which different musical scales derive.

Beyond the predefined scales, i.e. pentatonic, Pythagorean diatonic, and equal tempered

chromatic, users can define their own scales. Once activated, the frequency bands may

either remain active until the user deactivates them or they are automatically

deactivated after an adjustable activation time. We introduced quantization as a further

effect that can be assigned to frequency bands. Each particle that enters such a band

plays its median frequency until it leaves the band again. In this way, tonality can be

introduced into the sounds created.

The initial mapping of the vertical axis of the playground to the frequency domain

is linear. Assuming a uniform distribution of the particles over the playground, the

linear mapping causes an emphasis of higher pitches since the human subjective

perception of pitch is approximately logarithmic in the frequency domain (Fastl and

Zwicker 2007; Loy 2006). Thus, the noise sounds denser in higher pitches which is well

suited for non-musical sound effects. TouchNoise allows for an even more nuanced

definition of the frequency domain. The user can switch to a logarithmic scaling for a

more musical use of TouchNoise and especially of the piano bar, as it allows a linear

mapping of musical scales along the vertical axis. The particle motion, however, remains

linear on the playground, i.e. uses a constant step width regardless of its vertical

alignment. Hence, higher frequencies are traversed faster in the logarithmic mapping

and the lower frequency bands are more emphasized. Further nonlinear distortions of

the frequency domain are possible: the user can expand and constrict frequency bands,
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see figure 4. While the particles still move visually with the same step width, the actual

frequency steps vary according to the mapping of the visual position to the frequency

position. The particles pass visually narrow frequency bands much faster (resulting in

quick sweeps) than those being widened.
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Figure 4. Frequency mapping distortion via pinch gesture.

Up to now, the particle flow is defined by the parameters of the Brownian motion

and influenced by magnetic, repellent, and drag interaction through touches or

frequency bands. The particles switch back to Brownian motion when the interaction

ends. The particle distribution fades gradually into white noise. This, however, does not

suffice to define longer lasting directed flow. Therefore, we introduce flow field

functionality to the playground. The flow field can be defined, literally painted, by drag

gestures on the playground. Figure 5(a) shows an exemplary circular field. A particle

that gets into it follows the indicated directions until it is released to the omnidirectional

area where it switches back to Brownian motion.

We added different flocking functionalities to introduce persistence also to the

clustering of particles. It is possible to add a leader particle to the playground that

attracts particles nearby, see figure 5(d). Moreover, flocking and swarming are possible

even without a leader through the Boids algorithm by Reynolds (1987, 2007). It gives
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control over the three parameters separation (avoid crowding), alignment (head toward

the average direction of local particles, see figure 5(b)), and cohesion (head toward the

average position of local particles, see figure 5(c)).

(a) A flow field can be
used to direct the parti-
cle motion.

(b) Flocking by align-
ment.

(c) A strong cohesion
causes the particles to
stick together.

(d) The white leader
particle attracts parti-
cles nearby.

Figure 5. Modes of particle flow.

All these influences—flow field, leadership, and Boids—can be weighted against

each other and the Brownian motion. The influence of a flow field to the particle motion

may, e.g. not completely eliminate Brownian behavior but, instead, the different step

directions of each mechanism are weighted and interpolated. This allows for the

creation of complex behaviors, e.g. a flock that follows a leader but the flock mates keep

a certain minimal distance to each other and exhibit a certain degree of Brownian

behavior even within the flock. The whole flock may follow a path through a flow field,

but only roughly as the flow field has a low weighting. Touch interaction, however, has

highest priority and dominates all other influences.

The technical implementation of TouchNoise has been done in Java. It utilizes the

multitouch framework MT4j and the sound synthesis framework JSyn (Burk 1998). Each

particle is synthesized by a sine oscillator. Frequency and amplitude modulations are

smoothed by linear ramp envelope generators. Each particle further includes a

level-difference stereo panning unit. Several hundred such particles can be instantiated

and are added up to the system’s output, see figure 6. Hardware performance limits the
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38 Chapter 2. TouchNoise: A Multitouch Noise Instrument
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Figure 2.2: The sound synthesis of TouchNoise.

determines its position in the stereo sound field (stereo-panning) and its ver-
tical position determines the frequency of the oscillator. The frequency ranges
from 20Hz to 20kHz. By default, the relation between the vertical axis of the
playground and the frequency domain is linear. This can be turned into a musi-
cally more useful logarithmic mapping. User-defined nonlinear mappings can
be achieved by pinch gestures on the playground, as shown in figure 2.3.

Each particle passes amplitude and frequency to its assigned oscillator, which
generates the corresponding sine signal. In order to prevent discontinuities in
the frequency domain, which would cause click sounds when the frequency of

Figure 2.3: Nonlinear distortion of the frequency mapping via pinch gesture.

Figure 6. The sound synthesis of TouchNoise.

maximum number of particles: On a test system with Intel Core i7-3770 CPU, 16 GB

RAM, GeForce GTX 680, and 3M multitouch screen we determined a limit of 200

particles for glitch-free performance. On faster systems we could go up to 400. Since

previous publications focussed on the technical aspects and development

documentation, the actual sonic properties of TouchNoise’s mapping and interaction

approach remained widely unreflected. It is the aim of this article, after summarizing the

final state of TouchNoise, to draw a systematic derivation and discussion of its sonic

capabilities and limitations throughout the next section.

The Sound of TouchNoise

For a systematic analysis and discussion of TouchNoise from a more aesthetic

perspective, we followed methodologically a similar iterative approach that is used in

interaction design. We tested systematically and experimented with single functions and

aspects of TouchNoise first. Thereby, we assessed how accessible, easy and fast to use,

and expressive these individual sound functions are. Where necessary, we had to
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re-iterate and improve the interface or interaction with it. An example for this process

has been described in the previous section for the frequency range and band-limiting of

the particle playground. Later, we combined several functions to support more complex

sound creation workflows and evaluated again how well their interplay worked. This

whole process was dedicated to identifying the role that the functions, their

combinations and TouchNoise as a whole can play in musical and non-musical contexts.

In the following, we present the rich set of sonic capabilities of TouchNoise.

Particle Distribution and Dynamics

As long as only a few particles are spread over the playground, they are easily

distinguishable as individual sine tones. This can be a basis for melodic use cases. The

more particles are added to the playground—we experimented with up to 400

particles—and the higher their density throughout the whole playground is, the more

diffuse is their sound, and it eventually fades into a homogeneous noise cluster.

An equal particle distribution throughout the whole playground resembles white

noise. In traditional synthesizers this noise would be sent to one or more filters to shape

its color. TouchNoise, however, has no such filters. Nonetheless, filter-like effects can be

achieved by two different means: particle distribution and accentuation. Concentrating

all particles in a tighter region resembles the sound of a very steep bandpass filter.

Bandpass and bandreject filtering can further be achieved through accentuation (via

direct touch and frequency band interaction) which sets clearly specified regions louder

or quieter than the surroundings. Moving the accentuation area throughout the

playground resembles the modulation of a traditional filter’s cutoff frequency.

Interestingly, a similar kind of effect can be achieved even without the amplitude as a

differentiating parameter, but merely by density. Tight clusters with their denser sound

contrast strongly with the surroundings, even though both have the same amplitude.

14



This shows that playing with the particle distribution on the playground marks the

major creative means of TouchNoise—possibly even more prominent than the creation

and deletion of particles or their amplitude-wise accentuation. The latter (accentuation),

however, is a convenient means for complementary emphasis.

In this regard, the transition processes between different distributions mark a

unique sonic property of TouchNoise which can hardly be reproduced with traditional

synthesizer concepts. Typical examples are the dissipation of a tight cluster and the

gradually increasing distinctness of the sound that a frequency band with a drag

function produces with every particle it catches while the surrounding loses more and

more sonic energy. These processes derive from the dynamics of the multi-agent system

(Brownian motion, flocking, flow field). They may perform fast or slowly and can be

influenced and designed in various ways by interaction, be it direct (drag, attract, repel

via touch and frequency band interaction) or indirect (through the parameters of the

Brownian motion and the weighting of the different flocking characteristics etc.).

In combination with the MIDI connection the effects can be combined in various

ways, which allows the user to develop multifarious playing techniques. An example for

this is what we call “Magnetic chords”3: The magnetic effect is assigned to the MIDI

connection; playing chords on the keyboard triggers the corresponding frequency bands

which then attract particles nearby. This creates a seamless fade from a noisy into a

harmonic spectrum and back into noise after the key release. By creating and dragging

particles, the user can redistribute sound energy between the chord notes played, assign

a denser sound to some of them, and control the stereo direction of their sound. It may

not even be intended that the particles reach a magnetic frequency band and aggregate

into a salient cluster. Magnetic and repellent forces may be applied only to set particles

in motion.
3See footnote 2.
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Spatialization

TouchNoise, in contrast to other systems that are solely dedicated to sound

spatialization (Kim-Boyle 2008; Pérez-López 2014), implements only level-difference

stereo panning. Basically, the panning axis could be circularly extended to full surround.

In order to achieve the same sonic density when the particles distribute over a wider

space, a proportionate increase of particles is required, which rapidly becomes very

demanding in terms of hardware performance. Furthermore, the current playground

design does not represent the spacial circularity of a surround setup well—particles

would jump from left to right edge and vice versa. In fact, the surround spatialization

(as well as two- or three-dimensional setups of the sound field) are better served with a

different mapping and interaction paradigm that requires less mental effort to translate

input domain to output domain. Instead of multitouch gestures on a planar display we

recommend spatial modalities such as free-hand gestures (Lech and Kostek 2013;

Marshall, Malloch, and Wanderley 2009; Quinn, Dodds, and Knox 2009). TouchNoise is

conceived and optimized for a stereo panning scenario. Its horizontal playground axis

parallels the horizontal spatialization axis. From a music-aesthetic point we regard the

frequency axis as the far more versatile and interesting playground dimension.

Frequency Mapping

Much effort has been invested in the mapping of the vertical playground axis into

the frequency domain. This mapping has a major effect on the sound and tonality of

TouchNoise. The linear mapping yields an emphasis of higher pitches and is well suited

for effects sounds. The logarithmic mapping, by contrast, provides a more musical basis

as it corresponds to the human perception of pitches and pitch intervals, respectively.

This emphasizes the lower frequency range. Two sound examples on the project page4

show typical use cases: “Funny lasers” is played on the linear mapping, “Pentatonic

4See footnote 3.
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rain” on a logarithmic. Further nonlinear distortions by pinch gestures (see figure 4)

may place the spectral emphasis on other frequency bands.

For understanding the resulting sonic properties, it is important to keep in mind

that the particles move through the playground with a constant step width (as long as

the user does not change this parameter). Except for the linear mapping, the speed at

which the sine oscillators move through the stereophonic frequency spectrum (see

section “TouchNoise: An Overview”) is not constant. Compressed frequency bands on

the playground are traversed with only a few steps which creates rapid sweep sounds.

Expanded frequency bands on the playground require more steps to pass them, hence

the sine oscillators perform slower glissandi.

With quantization we introduced a way to add tonality and create pitched sounds

in TouchNoise. Quantized frequency bands are clearly audible in a non-quantized

environment. The more frequency bands are quantized, the more the sound changes

from noisy to tonal. If a single particle moves through a fully quantized playground, its

output—a stepwise progression of scale tones—obtains melodic quality. Particles with

limited lifetime and a predefined movement direction (using flow fields) may serve as

motif generators. However, as this derives from the particle’s motion, which is

quasi-continuous, there cannot be melodic intervals other than to the neighboring scale

tones. That means, it cannot jump to distant pitches without triggering those in-between.

Classical monophonic lead/melody playing can be done via a MIDI keyboard that

triggers magnetic frequency bands; now, the particles will always follow the MIDI notes.

But they do not jump to the notes, they follow continuously which creates portamenti.

This shows that, even though TouchNoise can be played in a quasi-melodic fashion,

it is no typical lead synthesizer and better suited for noise sounds, sound effects and

tonal as well as noisy sound clusters and soundscapes. These can feature more or less

complex inner dynamics—depending on the particle motion.
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Persistent Sound Structures

The minimum step width that can be set for the particles is greater than 0. This

means that the particles are always in motion. So are the sounds they produce. Due to

the Brownian motion, any unequal distribution dissolves into an equal distribution after

a certain period. This process may run faster with large step widths and narrow rotation

scopes. It can be slowed down with only short step width and wide rotation scope

(≥ 180 degree) settings.

Beyond this, flow field functionality can be used to direct the particle motion

without the need of explicit drag, magnetic or repellent interaction. With the various

flocking properties (alignment, cohesion, separation, and following) more persistent

particle clusters can be created which share common motion behaviors. Even though

these mechanisms may in a way correspond to LFOs and envelopes (self-contained

modulation sources) in traditional synthesizers, they create a more complex interplay

between frequency and panning modulation in TouchNoise.

Frequency band interactions overrule flow field and flocking influences of the

particle behavior, and direct touch interactions overrule frequency bands. Hence, it is

always possible to intervene and change the defined characteristics.

What you can (not) do with TouchNoise

As the previous sections already show, the user of TouchNoise should not expect the

behavior of a traditional musical instrument or synthesizer! TouchNoise follows its own

unique approach of defining an interaction space filled with autonomous particles and

corresponding affordances and possibilities to manipulate their behavior through

multitouch gestures. In this it differs significantly from common note-wise instrument

playing. Likewise, TouchNoise’s distinct mapping of the particle system into a sounding

output does not follow the conventions established by traditional synthesizers. In this
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SwarmSynth (Hargreaves 2003), even though a keyboard-based note-wise approach, and

CataRT (Schwarz, Beller, Verbrugghe, and Britton 2006), even though based on a

different type of sound material and behavior, are conceptually the closest. Although

TouchNoise’s sound synthesis is based on additive synthesis with up to several hundred

frequency modulated sine signals, the comparison with traditional additive synthesizers

is problematic. Direct interaction with the particle system through multitouch gestures is

the key part of the interaction concept, not keyboard playing even though the MIDI

connection allows this, too. This provokes different music-aesthetic approaches. The

following paragraphs expand on this.

TouchNoise is conceived as an active musical instrument, i.e. it creates its output

autonomously. Instead of having to trigger each note or other type of musical primitive

events separately, the user’s role is to direct the instrument while it plays by itself. Even

though some interactions can also be used for very immediate event generation (e.g.

adding particles by touch gestures on the playground), this is not the usual pace of

TouchNoise. The player triggers change processes and events that develop over time

and feature a certain decay time (e.g. clusters that, once released, need time to spread out

again). The user primarily interacts with the particles and their behavior. The creation

and deletion of particles are mostly part of the initialization and termination of such

processes.

Accordingly, TouchNoise’s concept has been focussed on the work with sustained

sounds. It is also possible to perform rhythmic patterns, e.g. with accentuation touches.

Chimes-like percussion effects can be achieved by continuously creating particles with a

lifetime of only 100 milliseconds. However, in general, TouchNoise is less suited for

rhythmically accentuated, percussive playing due to its relatively flat envelope slopes at

the creation, deletion, and accentuation of particles. The current implementation uses

only attack-sustain-release envelopes. Experiments with other characteristics are due.
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We expect that attack-decay shapes could be especially relevant in combination with

limited particle lifetime: Particles would get a clear accent at their creation and

continuously fade out until deletion. Furthermore, accentuation can be enhanced by a

more percussive peak at the start of the amplitude increase.5

When a MIDI keyboard is used to accentuate or attract particles within and around

certain frequency bands, a further peculiarity of TouchNoise emerges. As a consequence

of the particle distribution, not every pitch is always playable. Accentuating a region

that has no particles has no audible effect. Attracting particles towards the lowest and

highest frequency band of a chord causes the bands in-between to stay empty. Again,

interaction with the particle behavior and distribution is central to the TouchNoise

concept. The musician not only triggers the instrument but has to interact with its

specific behavior. Playing magnetic frequency bands on a MIDI keyboard may not even

intend to play specific pitches but to affect the surroundings, to attract particles into a

certain direction.

Furthermore, each particle represents a sine oscillator that outputs sound energy at

its specific frequency and stereo position with no overtones. Particles are never coupled

in terms of a fixed overtone structure, so that they could establish a consistent timbre.

Also piano playing with the frequency bands affects only these frequency bands and

creates no harmonics, i.e. higher frequency content. Against this background, the

concept of timbre as a spectrum of overtones over a fundamental frequency does not

apply to TouchNoise. Instead, another musically expressive design axis derives from the

particle distribution: noise clusters can be condensed until they transform into pitched

sounds and vice versa.

Among the strengths of TouchNoise are its unique possibilities to interact with

5This is, of course, not true for accentuation levels below the basic volume level, i.e. when the accentua-
tion attenuates the output of affected particles.

20



noise spectra, to create sound effects such as sweep sounds and to modulate and

transform the sounds in ways that are hardly possible with traditional synthesizer

concepts. TouchNoise can also be used for tonal music, e.g. to create slowly evolving

pad sounds, tonal/pitched sounds surrounded by noise or that fade into noise when

released (as in the above mentioned magnetic chords example).

TouchNoise’s output does not need to be the end of the DSP chain. As with many

musical instruments in a greater music production context, it is convenient to refine the

sounds created. Equalizing can attenuate TouchNoise’s harsh treble. Reverb effects can

introduce a certain spatiality to the initially dry sound. TouchNoise might also be used

to deliver the basic sound material for a traditional subtractive synthesis. Furthermore,

in many situations less than the maximum number of particles is audible, only a few

particles may have been created. In these situations the loudness level is significantly

lower than a full tutti of several hundred particles. If this is not desired, a subsequent

dynamic range compression helps compensating this.

Conclusions

It is important to understand TouchNoise as a self-contained musical instrument

with its own unique properties and possibilities. TouchNoise does not resemble another

instrument’s conception. Just as it is practically not feasible mimicking another

instrument with TouchNoise, TouchNoise’s sound, behavior and capabilities cannot be

mimicked by other instruments.

TouchNoise is based on the additive synthesis of up to several hundred sine signals

represented by particles, autonomous individuals in a multi-agent system, that spread

throughout the stereophonic frequency spectrum. The user interacts with the particles by

means of rich and intuitive multitouch interaction and the MIDI connection and thereby

affects the sounds they produce. This article gave an introduction to TouchNoise’s
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concept and functionalities. We provided a comprehensive, systematic analysis and

discussion of the novel sonic capabilities that derive from this technical basis and

interaction approach. We described several examples for typical playing techniques.

TouchNoise’s strength lies in its openness that allows the creation of complex effects

and playing techniques through various combinations of touch gestures, frequency

bands and MIDI connection, flocking and flow field mechanics. These open up a variety

of possibilities for creative musical-aesthetic experiments and new sounds.
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