
Off-Screen Visualization Techniques for Class Diagrams
Mathias Frisch, Raimund Dachselt

User Interface & Software Engineering Group
Otto-von-Guericke University

Magdeburg, Germany

[mfrisch, dachselt]@isg.cs.uni-magdeburg.de

ABSTRACT
Visual representations of node-link diagrams are very important
for the software development process. In many situations large
diagrams – probably consisting of hundreds of nodes and edges –
have to be edited and explored. In state-of-the-art modeling tools
these activities are often accompanied by time consuming
panning and zooming. In this paper we contribute the application
of off-screen visualization techniques to the domain of node-link
diagrams in general and to UML class diagrams in particular. The
basic idea of the approach is to give a contextual view of all nodes
which are clipped from the current viewport. Nodes are
represented by proxy elements located within an interactive
border region. The proxies show information of the associated
off-screen nodes and can be used to quickly navigate to the
respective node. However, there are several challenges when this
technique is adapted to node-link diagrams, for example
concerning the change of edge routing or scalability. We describe
the design space of this approach and present different
visualization and interaction techniques in detail. Furthermore, we
conducted a formative evaluation of our first prototype. Based on
the observations made during the evaluation, we came to final
suggestions how particular techniques should be combined.

CR Categories: D.2.2 [Software Engineering]: Design Tools and
Techniques – User Interface; H.5.2 [Information Interfaces and
Presentation]: User Interfaces – Graphical User Interfaces

General Terms: Design, Human Factors

Keywords: Off-screen visualization, UML, contextual view,
interaction, node-link diagrams, navigation

1. INTRODUCTION
Visual representations of node-link diagrams play a very
important role in nearly all phases of the software development
process. They are used to design the architecture of systems, and
they are applied to understand and communicate problems [2].
Over the last 15 years the Unified Modeling Language (UML)
[17] has been established as a common standard for designing and
modeling software systems. In many situations, UML diagrams
can become large with hundreds of nodes and edges. Moreover,

within one diagram there can be different elements with a variety
of properties. During the design and development process these
diagrams have to be explored, created from scratch, and
properties have to be added or changed. In many situations these
activities are accomplished in a manual way by developers and
software designers.

In this work we focus on UML class diagrams as an application
example. Class diagrams are most widely applied [4, 21] and
feature all the aforementioned characteristics. There are different
types of nodes such as classes and interfaces and different types
of edges such as associations, generalizations and aggregations.
These elements possess a variety of properties such as labels and
multiplicities which have to be set or changed.

During the editing process users need to navigate within the
diagram. They must be able to focus on a particular node or to
move to a certain part of the diagram. Basically, navigation can
take place in two ways. On the one hand users orient themselves
in a “geographic way” similar to map navigation. This means that
they know for example the spatial location or the direction of a
particular node. On the other hand navigation can be performed
by means of the diagram topology and diagram semantics. For
example, users often know which nodes are connected or on
which level of a tree structure a particular node is located.
Contextual semantic information is important for this kind of
navigation. For example, properties of edges, such as labels or

Figure 1. Viewport of UML class diagram editor with off-
screen visualization (center). Classes clipped from the view-

port (shown outside in gray) are represented by proxy
elements located within the interactive border region.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SOFTVIS’10, October 25–26, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10...$10.00.

multiplicities, and types of connected nodes must be available.
Usually, state-of-the-art modeling tools only support the map
navigation approach and offer zooming and panning combined
with overview and detailed view. However, for large diagrams the
overview visualization becomes very small and unreadable, which
is hardly helpful. Beyond that, when zoomed in on a particular
element, other elements move off screen. They are not visible
anymore and can only be reached by means of cumbersome and
time consuming panning and zooming. For example, the class
diagram depicted in Figure 1 consists of 51 classes. Three
particular classes are zoomed in to be able to read their properties,
all others are clipped. Furthermore, important contextual
information is also invisible if these traditional techniques are
applied. In order to overcome this problem, focus+context
techniques have been investigated. They usually distort the
content of the context region, e.g. by means of a degree of interest
function (DOI) [8] or in a geometric way [19]. However, they also
give little or no information on a semantic level.

In this paper we investigate off-screen visualization techniques
for node-link diagrams as an alternative to traditional
overview+detail or distortion oriented focus+context techniques.
Up to now, off-screen visualization techniques were mainly
applied to mobile devices [1, 9]. However, we conceive it as a
promising technique to improve diagram navigation as well and
extend it for this domain. Our approach offers a zoomable user
interface combined with a contextual view displaying off-screen
nodes by means of proxy elements. These elements are arranged
within an interactive border region of the display (see Figure 1).
Furthermore, they serve as links providing automatic navigation
to the associated off-screen node. Proxy elements offer spatial
information as well as semantic information about elements
currently clipped. In that way, our technique supports both, map
oriented navigation and navigation based on diagram semantics.

In this research we contribute how off-screen visualization
techniques can be applied to node-link diagrams in general and to
UML class diagrams in particular. We discuss the respective
design space of the approach concerning visualization and
interaction techniques. More precisely, we contribute techniques
which preserve the routing of edges during panning and zooming
and present strategies to make our approach scalable for large
node-link diagrams. This comprises filtering and clustering of
proxy elements not only according to geometric rules but also to
semantic rules. We implemented a prototype for navigating and
editing a selected subset of UML class diagrams. This application
was used to conduct a formative evaluation. Observations and
comments collected during the study led to final suggestions
which concrete techniques of the design space should be
combined.

The paper is structured as follows: Section 2 presents related
work. In Section 3 we give an overview of our approach and
discuss particular challenges. After that, visualization and
interaction techniques are presented in detail in Section 4 and 5.
Section 6 describes our prototype for editing and navigating class
diagrams. The formative expert evaluation is described in Section
7. Finally, we give a conclusion and an outline of future work.

2. RELATED WORK
There are several approaches to support users in navigation tasks
for huge information spaces such as node-link diagrams. In

general, these approaches comprise zoomable user interfaces,
overview+detail and focus+context techniques. A comprehensive
overview of these kinds of interfaces is given by Cockburn et al.
[3]. In the following sections we will discuss their application to
the domain of node-link diagrams.

2.1 Overview+Detail and Zoom+Pan
The overview+detail technique combined with zoom+pan is
certainly the most established approach in state-of-the-art diagram
modeling tools such as [10, 14, 22]. Usually an overview is shown
in an interactive separated area at the border of the workspace. It
shows the whole diagram in miniature and uses a viewfinder
rectangle to indicate which part is currently observed in detail.
Users are able to move this viewfinder for panning or can select a
certain part of the overview in order to navigate to this location in
the detailed view. There are some approaches which try to
improve overview+detail techniques.
In the work of Dwyer et al. [5] a slower but high quality layout
algorithm is applied to the detailed view of the currently focused
part of the diagram. For the overview a fast but less accurate
approach is used. The authors applied their approach also to UML
class diagrams and offer semantic zooming. Sharp et al. [20]
present several techniques to support the interactive exploration
of UML sequence diagrams. For instance, different kinds of filters
can be applied to the overview of the diagram. The filters result in
graying out or culling certain parts. Furthermore, if a particular
message is selected in the overview, the detail view shows the
source and target object and the respective call stack.
Concerning overview+detail techniques two general problems
exist: the overview window occupies additional screen space and
there is more cognitive load, as users have to switch between both
views [3]. Beyond that, Nekrasovski et al. [16] compared
zoom+pan to focus+context for a huge tree structure. They
applied both conditions with and without overview and found that
showing an additional overview window had no influence on the
users’ performance.
Tominski et al. [26] and Moskovich et al. [15] presented
techniques called “Edge-Based Traveling” and “Link Sliding”
respectively. They focus on reducing the effort of manually
panning for navigating to adjacent nodes in graphs. In order to
achieve that, they apply automatic navigation along edges. With
our approach we also support automatic navigation. However, in
contrast to Tominski et al. and Moskovich et al. it is possible
between arbitrary nodes, not only between connected ones.
Furthermore, with our technique no manual mode switch is
necessary to get a preview of the target node.

2.2 Focus+Context
In contrast to overview+detail, focus+context techniques integrate
both views in one view. Thereby, elements in focus are shown at
a high level of detail and those in the context area are condensed
according to certain strategies. For example, elements beyond a
particular DOI are blended out as in Fisheye Views presented by
Furnas [8] or context elements are geometrically distorted [19].
Existing focus+context techniques can be categorized in
approaches with global distortion (distortion affects the whole
information space) and approaches with local distortion (only
some objects of the information space are distorted). Both have
been applied to node-link diagrams and graphs.

2.2.1 Global Distortion Techniques
Global geometrical fisheye views have been applied to graphs by
Sarkar et al. [19]. The focused node is magnified and all other
nodes are geometrically distorted. The authors developed two
different approaches to achieve distortion: cartesian and polar
mapping. Turetken et al. [27] and Reinhard et al. [24] seize on
this approach and apply it in order to visualize hierarchical
nesting of nodes. Particular nodes, e.g. of business process models
and data flow diagrams [27], can be expanded in order to show
nested nodes of a finer level. This technique is also applied in
ShriMP [29]. Besides fisheye techniques, ShriMP offers also
semantic zooming and multi-focus visualization. It has been
applied to visualize the structure of ontologies and Java programs,
e.g. by means of call graphs. Jacobs et al. [12] use a fisheye
technique is in conjunction with UML object diagrams. It serves
for visual debugging and dynamically changes the levels of detail
of objects according to a DOI function.
Kagdi et al. [13] apply a focus+ context approach to classes of
inheritance hierarchies in UML class diagrams. In contrast to
aforementioned works, they do not use graphical distortion.
Instead, context nodes are represented as an onion graph notation.

2.2.2 Local Distortion Techniques
Local distortion is often applied by means of lenses. For example,
Tominski et al. [25] presented different lenses for graph
visualization. The approach can be used e.g., to bring connected
neighbors of a selected node towards the focused area. A similar
technique – called bring & go – was presented by Moscovich et
al. [15]. It moves proxies of adjacent nodes close to the selected
node and can be applied in an incremental way (bring & go can
also be invoked on proxies).
Furthermore, Tominski et al. [26] developed a radar view mode
for graphs. During navigating a graph by means of a pan-wheel,
off-screen nodes are projected to the border of the current
viewport. This gives the user the possibility to look ahead during
panning. In contrast to off-screen visualization, as we propose it
in this paper, this technique does not use proxies, does not show
off-screen nodes permanently and does not allow interaction with
off-screen nodes.

2.3 Cue-based Techniques
In contrast to the aforementioned approaches, cue-based
techniques do not distort or modify the elements located in
context. Rather, proxies for the elements which are located in the
off-screen area are created. These proxies are often shown as
overlays at the border of the display. In that way, a contextual
view on elements currently clipped is given. In recent years
several cue-based off-screen visualization techniques have been
developed. They range from arrows (e.g. applied in computer
games) to techniques such as Halo [1] or Wedge [9]. The latter
were mainly developed for map navigation on small displays of
mobile devices. They are designed to indicate the existence, the
direction of and the distance to off-screen elements by means of
overlays. However, they do not show further information about
the off-screen element such as its type, and they are not
interactive.
City Lights [31] is a first sketch for an off-screen visualization
approach which uses proxy elements instead of graphical
overlays. It realizes contextual views for hypertext systems. For
proxy elements different graphical dimensions such as points,

lines and 2D objects are discussed. Furthermore, Irani et al. [11]
presented Hop, which allows users to navigate to off-screen
elements by means of automatic panning. The technique applies a
rotating laser beam to create proxy elements near the focused
item.
The study conducted by Nekrasovski et al. [16] compared
zoom+pan with focus+context (a rectangular rubber sheet) for
navigation tasks within a large binary tree. Results showed that
the zoom+pan interface was faster and demanded less mental
effort than the focus+context interface. Beyond that, Halos were
used to indicate the position of already visited nodes. These
findings encouraged us to apply off-screen visualizations to node-
link diagrams. In contrast to Nekrasovski et al., we do not only
visualize the geometric location of an off-screen node. We go
beyond this rather simple adaption of already existing approaches
and contribute techniques such as clustering strategies for proxy
elements e.g., based on diagram semantics, two different ways of
projecting off-screen nodes and visualizing a variety of additional
semantic information.

3. THE OFF-SCREEN VISUALIZATION
APPROACH
In order to make diagram editing and navigation tasks more
efficient and effective, we seize on the off-screen approaches
discussed in 2.3. We contribute their application to node-link
diagrams in general and to UML class diagrams in particular. This
section describes the general idea of our approach and discusses
additional challenges which occur when off-screen visualization
techniques are applied to the application domain of node-link
diagrams.
The proposed user interface is structured as follows: The currently
focused part of the diagram is shown within a rectangular
viewport. This is done in the same way as in common diagram
editors. Within this view, navigation takes place by means of
panning and zooming. The viewport is surrounded by an
interactive border region (see gray area in Figure 1). It is used to
show proxy elements which represent nodes located off-screen.
According to Zellweger et al. [31] there are four different types of
information about unseen objects: Awareness, Identification,
Navigation and Interaction. We interpret them as requirements
and consider them in the following way:
Awareness. As mentioned above, we indicate the existence of
off-screen nodes by means of proxy elements. Proxies are created
by projecting the position of the clipped nodes to the border of the
currently visible part of the workspace. Different ways of
projection are presented in Section 4.1. The edges between off-
screen nodes are not visualized within the border region to
prevent clutter.

Identification. Commonly, diagram items hold distinct
informational properties. There are, for example different types of
nodes. For UML class diagrams we currently distinguish classes,
abstract classes and interfaces. These properties are mapped to the
color and the labeling of proxy elements to show the type of the
associated node (see Section 4.2 and Figure 5 for details).
Furthermore, we propose that edges connecting visible nodes and
off-screen nodes are attached to the respective proxy elements.
This technique ensures that properties such as arrow heads are
always visible and the type of the edge can be easily identified.

Beyond that, further properties such as edge labels or
multiplicities located off-screen are rearranged accordingly to
ensure their visibility.
Navigation. The position of a proxy element is dynamically
updated during manual panning and zooming according to the
position of its associated off-screen node. In that way, the
direction of the off-screen nodes is always indicated in order to
support manual navigation. The dynamic update is based on the
projection mentioned above. In particular, we implemented two
algorithms: radial and orthogonal projection (see Section 4.1).
Besides manual navigation, we also support automatic navigation.
If a proxy is clicked, automatic zooming and panning is started in
order to navigate to the respective off-screen node. This technique
allows a fast and targeted navigation to a clipped node (details can
be found in Section 5).
In contrast to approaches such as Halo [1] or Wedge [9], we do
not focus on visualizing the distance to an off-screen element. For
most of the diagram notations we consider this information as less
important compared to semantic information such as the type of a
clipped node.

Interaction. Proxy elements are interactive, and can give further
information about associated off-screen nodes on demand such as
previews. These and further interaction techniques are also
discussed in Section 5.
Beyond the mentioned requirements, several new challenges have
to be taken into account when off-screen techniques are applied to
the domain of node-link diagrams. This includes scalability, the
shape of proxies and the diagram layout and edge routing:
Scalability. The technique should be applicable for large
diagrams with at least hundreds of nodes. However, off-screen
visualization techniques usually suffer from cluttered proxies if a
large amount of off-screen elements exist. We try to overcome
this problem by automatic clustering and interactive filtering of
proxy elements. Different clustering strategies are presented in
Section 4.2 and filtering is presented in Section 5.3.
Shape of proxies. Indicators such as arrows, halos or wedges are
hard to distinguish from edges and their visual properties

Figure 2. Proxy elements are created by projecting off-screen
classes onto the interactive border region (gray area). Class
CX is represented by proxy X’. For edges connected with

proxy elements the routing is changed (see aggregation
between C2 and C4).

(e.g. arrow heads). We decided to apply proxies which resemble
the concrete visual syntax of the diagram notation. Therefore, for
class diagrams we use proxies with squared shape.
Diagram Layout and Edge Routing. The diagram layout and the
routing of edges should be preserved by the visualization
technique. For many types of diagrams the layout of nodes and
edges can express a special meaning. It is used as a secondary
notation [18] and is an important visual guide for users to build a
mental map of the diagram. Several layout guidelines for
particular types of diagrams exist (in order to produce aesthetic
layouts). For UML class diagrams e.g., within inheritance
hierarchies general classes should be arranged above their
subclasses. Further aesthetic rules are presented by Eichelberger
et al. [7]. As previously mentioned, edges leading to the off-
screen area are attached to proxy elements. This can result in
layout changes during panning and zooming. We investigated
several solutions for this problem; they are presented in detail in
Section 4.1.

4. VISUALIZATION DETAILS
In order to fulfill the requirements and master the challenges
mentioned in the previous section, we investigated several design
alternatives for all parts of our visualization technique. In this
section we contribute promising solutions and discuss their
benefits and drawbacks. We start with issues occurring within the
viewport. After that, we discuss the appearance of the proxy
elements. Finally, we present different possible designs for the
interactive border region.

4.1 Projection
Proxy elements are created within the interactive border region by
means of projecting the positions of off-screen nodes to the border
of the viewport. Edges between visible nodes and clipped nodes
are attached to the respective proxy elements. In that way, the
type of the edge is always visible. In Figure 2 Class C1 and C2
are both on-screen and connected with Class C3 by means of
generalization relationships. Class C3 is located off-screen and
represented by the proxy element 3’. Both generalizations are
attached to this proxy element, denoted by the black
generalization arrows. Otherwise, the arrow heads would be
located off-screen and not be visible for the user (see gray
generalization arrows). The edge is automatically released from
the proxy element and attached back to the respective node when
the node becomes visible due to zooming or panning.
In Subsection 4.1.1 we discuss how projecting nodes in a
geometric way affects edge routing and present solutions to make
these effects as comprehensible as possible. After that, we present
a technique which preserves edge routing completely.

4.1.1 Geometric Projection
Basically, projecting nodes onto the border of the viewport can be
done in two ways: either orthogonal or radial. Both ways clearly
indicate the direction of an off-screen node. We subsume these
two possibilities as geometric projection. For orthogonal
projection nodes are projected perpendicular to the border of the
viewport. For radial projection the center of the projection is
located in the center of the viewport. An example for both
approaches is shown for Class C6 in Figure 2. Orthogonal
projection results in the proxy element 6’ and radial projection in

proxy element 6’’. All other nodes in Figure 2 are projected in the
orthogonal way only.
However, when geometric projection is applied, the edge routing
is changed dynamically during pan and zoom interaction. This
happens because edges stick to the proxy elements as described
above. In particularly, this becomes problematic if an edge is bent
and consists of several segments. This can be observed for in
Figure 2 for the generalization between Class C1 and C5 and for
the aggregation between Class C2 and C4. The edges are bent and
inflection points are located in the off-screen area. In the depicted
example a proxy edge segment is inserted from the last on-screen
inflection point to the proxy element. This approach does not
change the entire edge routing, but still changes the route
significantly. Proxy edge segments can be rendered in a different
color than actual edge segments in order to signal that they do not
represent the original edge (see Figure 2 and Figure 4 where
proxy edge segments have a black color).
A permanent change of the edge routing during panning and
zooming can be hard to comprehend for the user. Furthermore,
guidelines for aesthetic diagram layouts [7] can be violated, as
edges crossing each other or edges crossing nodes can occur. In
the following subsections we present solutions to make the
change of edge routing as comprehensible as possible. A second
goal is to preserve at least the routing of the visible part of the
edges. In order to deal with these problems, we came up with two
different solutions: animated inflection points and routing along
the border.
Animated Inflection Points In order to make the change of edge
routing more comprehensible, we suggest animating the inflection
points towards the proxy edge. The animation starts when the
respective node moves off-screen. When the node becomes
visible again, the inflection points are animated back to their
original position. The drawback of this approach is that even
visible parts of an edge are changed. In addition, proxy edge
segments can cross other edges or even nodes.
Routing along the Border Our second solution is to route off-
screen edges along the border of the display. With this approach
the visible part of an edge maintains its routing completely. Proxy
edge segments start at the intersection point of the edge and the
border of the display and lead to the proxy element (see Figure 3
left). The proxy edge is routed according to the original edge (in
Figure 3 first downward and then to the left). Another variation of
this approach is depicted in Figure 3 right. Here the proxy edge
segment is rendered in a rubber band style e.g., by means of a
Bezier curve. The general drawback of this solution is that

Figure 3. Concept sketch for routing edges along the border of
the viewport: rerouting by straight proxy segments (left) and

by rubber band (right).

edgeclutter can occur along the border of the viewport if an off-
screen node has many edges.

4.1.2 Projection along Edges
In order to avoid the change of edge routing completely, we
suggest along edge projection. In this approach off-screen nodes
which are connected with visible nodes are projected along their
edges. In that way, proxy elements appear at the first intersection
point of the edge and the border of the viewport. Thereby, the
layout of edges is maintained. Figure 4 depicts the same example
diagram as Figure 2 but with along edge projection. Off-screen
nodes are projected by means of orthogonal projection if they are
not connected with visible nodes. Otherwise they are projected
along the edge (e.g., 4’ and 5’). In order to distinguish the way a
node was projected, we suggest applying two types of border
colors for proxy elements. Proxy elements projected along edges
have a darker border color than proxies created by geometrical
projection (see Figure 4). Beyond that, they are rendered always
in the foreground and are never aggregated in geometric clusters
(see 4.2.1). There are two further characteristics of this technique.
An off-screen node can be represented by more than one proxy
element, if the node has several edges. In this case one proxy is
created for each edge. This can be observed in Figure 4: for Class
C3 a proxy element appears for each generalization relationship
(3’ and 3’’). Furthermore, if nodes are connected by means of
bent edges the location of the proxy element does not correspond
to the off-screen position of the associated node. In Figure 4 the
proxy element 4’ (representing Class C4) appears at the right
border, but the Class C4 is located at the bottom. This can be
confusing for the user, as when the proxy element is clicked, the
viewport does not move in the expected direction.
We address this problem by applying a temporal geometric
projection. It is performed only when a node projected by means
of along edge projection is hovered with the mouse cursor. The
associated node is additionally projected geometrically. This
results in a second proxy element which indicates the actual
direction of the node. In Figure 4 the proxy 4’’ is a temporal
proxy for 4’ which appears only when 4’ is hovered. However, it
has to be clarified if along edge projection and temporal
projection are comprehensible for the users.

Figure 4. Proxy elements are created by means of along edge

projection. For class C3 two proxies are created (3’ and 3’’), if
proxy 4’ is hovered, 4’’ appears to indicate the proper

direction of C4.

Figure 5. Different shapes for proxy elements (left), from left
to right: class, abstract class, interface and a cluster of four

nodes. Proxy for a class and attached edges (right).

4.2 Proxy Elements and Clustering
In our current implementation we distinguish between four
different types of off-screen nodes. For the respective proxy
elements we use rectangular shapes with different coloring and
labeling. Thereby, the chosen colors comply with the colors of the
associated nodes. The applied shapes are depicted in Figure 5 left:
proxies for classes are orange rectangles; proxies for abstract
classes are less saturated and additionally labeled with “A” and
proxies for interfaces have a higher saturation and are labeled
with “I”.
In order to connect edges with proxy elements, each proxy owns a
so-called edge port. An edge port is a semicircular extension of a
proxy element. It has the same color and reaches from the
interactive border region into the workspace. If an off-screen node
is connected with several visible nodes the respective edges are
attached at the edge port in order to prevent clutter of edges. This
is necessary, especially when properties such as arrow heads are
present (see Figure 5 right). Edge ports only appear when the
associated off-screen node is connected with visible nodes.
In order to avoid clutter within the interactive border region, we
suggest clustering of proxy elements. In that way a scalable
technique can be realized for large diagrams. In particular, there
are two different ways of clustering proxy elements: geometric
and semantic clustering. Both can be applied simultaneously.

4.2.1 Geometric Clustering
Geometric clustering is applied if more than one node is projected
to the same position of the interactive border region. In that case,
a cluster proxy is created. For an example see Figure 6 (case 1,
left hand side), where the classes C3 and C4 are represented by a
cluster proxy. They are depicted as an icon which indicates
aggregated elements in a stacked way (see Figure 5).
Furthermore, cluster proxies show the number of aggregated
elements (two in Figure 6). The number is incremented if an
associated node moves from the viewport to off-screen and
decremented when a respective node becomes visible.
Furthermore, for orthogonal projection cluster proxy elements are
created for nodes located in the off-screen areas towards the
corners of the viewport (see Classes C6 and C7 in Figure 6).
With geometric clustering, proxies are clustered even if there is
free space available in the surrounding area. For example, in
Figure 6 (left hand side) there is free space above and below the
cluster proxy for C3 and C4. For this case, we implemented an
algorithm that checks the neighborhood of an existing proxy
element. If another proxy element is going to be placed at the
same position and free space is available in the immediate
vicinity, the proxy element is placed at the free position instead of
being hidden in a cluster. Whether this avoid cluster algorithm is
useful depends on the type of diagram. For instance, in state
charts or activity diagrams this kind of clustering is certainly not

Figure 6. Geometric clustering (case 1, left) and semantic

clustering of an inheritance hierarchy (case 2, right).

beneficial. For these kinds of diagrams arranging nodes in a
vertical or horizontal layout is part of the secondary notation
[18].For example, placing proxy elements above each other,
although their associated nodes are arranged in a horizontal line,
can be confusing here.

4.2.2 Semantic Clustering
Besides geometric clustering, proxy elements can also be
clustered according to semantic rules based on the particular
diagram notation. For UML class diagrams we propose the
clustering of inheritance hierarchies. Further possibilities would
be to cluster elements belonging to the same package or classes
connected by means of aggregation or composition relationships.
Figure 6 (case 2, right hand side) shows an example for this
technique. The visible class C1 is part of a hierarchy located off-
screen. All classes which are directly or indirectly sub-classed
from class C2 are aggregated into one cluster.
According to geometric clusters, semantic cluster elements show
the amount of clustered classes by means of a number (in this
case six). Again, the number is incremented and decremented
when a clustered node becomes visible or invisible respectively.
Semantic cluster proxies are located at the place where the next
connected off-screen node of the cluster is projected. In Figure 6
(case 2) C1 is connected with off-screen class C4 and the cluster
proxy appears at the position where C4 is projected by means of
orthogonal projection.

4.3 Design of the Interactive Border Region
For the appearance of a proxy element, there are different design
variants conceivable. They depend on the dimension of the border
region. For a 1D-border proxy elements can be drawn as symbols
with different colors, shapes or labels. In particular, approaches
such as the onion-graph notation [13] can be applied for clustered
inheritance hierarchies in class diagrams. Furthermore, we
propose to stack proxies according to their position within the
diagram layout. This could be seen as a 1.5D solution, as the
spatial position of nodes would be recognizable without a
complete 2D layout. Finally, the border region could allow a two
dimensional arrangement of proxy elements according to the
geometric layout of the associated nodes. This would result in a
bifocal view [23] providing a condensed view of the remaining
diagram within the border. Furthermore, we propose to use

Figure 7. Different dimensions of the border region, from left

to right: 1D, 1.5D and 2D. Border region with rounded
corners (right).

rounded corners for the interactive border. This approach can
avoid clustering of proxy elements in the corners of the display if
orthogonal projection is applied. Beyond that, for radial
projection rounded corners can avoid an abrupt change of
direction of proxy elements during panning. These solutions are
subject of further investigation.

5. INTERACTION
The positions of proxy elements are constantly updated during
manual panning and zooming. The update takes place according
to the position of the associated off-screen nodes and the applied
projection algorithm. Furthermore, when a node crosses the
border of the viewport, the respective proxy element is blended
smoothly in and out, in order to make the relation of node and
proxy comprehensible.
Hovering with the mouse cursor over a proxy, results in a preview
of the associated node. The preview is shown as an overlay within
the diagram workspace and is located close to the border region at
the side of the respective proxy element. For cluster proxies a list
of previews appears consisting of one preview for each clustered
node. In our prototype a preview shows the label of the class or
interface. Each preview has the same color as the associated
proxy element. The previews are blended out smoothly when the
mouse cursor is leaving the proxy element. Furthermore, we
suggest that previews can be expanded to show the content of the
respective node.
Besides that, if a visible node is selected, the proxy elements
which are directly connected with the selected node are
highlighted, and all their previews are shown. In that way, a user
can easily get more information about nodes the currently
selected one is connected with.

5.1 Navigation
In addition to traditional navigation by manual panning and
zooming, we offer automatic navigation. This is achieved by
clicking a proxy element or a preview which results in an
automatic zoom+pan animation to the respective off-screen node.
With this technique it is possible to focus a particular node in a
targeted and fast way. In particular, users are able to explore the
topology of the diagram by hopping from node to node. In UML
class diagrams for example, this technique can be applied to
navigate within inheritance hierarchies along generalization
relationships by clicking proxies which represent connected
classes. In order to make the automatic navigation as smooth and
comprehensible as possible, we applied simultaneous panning and
zooming according to van Wijk and Nuij [28].
If a cluster proxy is clicked, the viewport is animated in a way
that all clustered nodes are focused. In order to navigate to a
specific node which is aggregated within a cluster proxy, there are
two options. Either the respective node is chosen from the list of

previews or a double click is performed on the cluster proxy. By
means of the double click the cluster proxy is expanded in an
animated way, showing all clustered elements as single proxies.
For geometric clusters the expanded proxies are distributed
evenly in the neighborhood of the cluster. For semantic clusters
all associated nodes are projected by means of geometric
projection resulting in proxy elements at the respective location.

5.2 Inserting Edges
Besides providing a quick navigation to clipped nodes and
guaranteed visibility of edge properties, we also support creating
edges between visible nodes and off-screen nodes. Edges can be
dragged to proxy elements of the border region and are connected
automatically with the associated off-screen node. Thereby, the
inserted edge is connected with an already existing edge port or
the edge port appears when the edge is dragged on top of the
proxy element. In that way, labels and other properties such as
multiplicities can be edited in place without further panning and
zooming. However, other nodes can be located in the way of the
inserted edge. Therefore, an automatic edge routing which avoids
the crossing of nodes such as described by Wybrow et al. [30]
should be applied.

5.3 Interactive Filtering
In addition to automatic clustering we propose interactive filtering
of proxy elements in order to prevent clutter and to make our
technique scalable to large diagrams. Filter criteria can be
adjusted interactively by means of the graphical user interface. As
a result, proxies not meeting the applied criteria are blended out.
There is a variety of filter criteria conceivable. For example,
proxies can be filtered according to their type (e.g., only proxies
representing abstract classes are shown), according to their
topological distance from the focused node. (e.g., only proxies of
directly connected classes are shown) or according to particular
metrics (e.g., only proxies of god classes with a huge amount of
attributes and methods are shown).

6. IMPLEMENTATION
We implemented the off-screen visualization approach as a
prototype for navigating and editing UML class diagrams. The
application is written in Java whereby the graphical user interface
is based on Qt Jambi. The prototype is based on the Eclipse UML
model [6] and diagrams can be imported by means of XMI. The
layout of a diagram is stored in a separate file, also using an XML
format.
Figure 8 shows two screenshots of the prototype. The class
diagram is shown in the center region with white background.
Proxy elements for off-screen nodes are placed within the
interactive border region with light gray background. Users are
able to pan by dragging with the mouse (holding the left mouse
button pressed) and to zoom with the mouse wheel. Proxy
elements are dynamically updated during interaction.
Our first prototype is capable to visualize class diagrams
consisting of classes, abstract classes and interfaces. Relationships
are limited to associations and generalizations. All nodes are
represented by respective proxy elements. Their appearance is
shown in Figure 5. We realized both ways of geometric projection
(orthogonal and radial) and along edge projection as explained in
Section 4.1.2. For geometric projection, the change of edge

Figure 8. Two screenshots of our prototype. A particular part of the class diagram is focused (left). Nodes located off-screen are
represented by proxies within the interactive border region. The position of the proxies is dynamically updated during panning

and zooming. For example, the screenshot at the right hand side shows the result of panning the left view to the left.

routing is performed by inserting a proxy edge segment from the
last visible inflection point to the respective proxy. Proxy
elements are clustered when two or more proxies are created at
the same position (see Figure 5 for cluster icon). Furthermore,
we implemented the aforementioned algorithm for avoiding
clusters (see Section 4.2). If there is enough space available
proxies are placed side by side until a certain distance threshold
is reached. Besides that, we implemented semantic clustering for
inheritance hierarchies. If parts of a hierarchy are located off-
screen they are aggregated in a cluster. When proxies are
hovered with the mouse cursor, labels of the associated classes
or interfaces are shown as previews. The previews are blended
out smoothly with a one second delay after the mouse has left
the proxy or disappear immediately if the background is clicked.
We also realized temporal geometric projection for along edge
projection (as described in Section 4.1.2).

7. EVALUATION
We conducted an evaluation of our early prototype. Our goal
was to collect feedback at an early stage of development, in
order to come to decisions for further design iterations. In
particular we wanted to clarify the following questions: Are
people able to understand the visualization technique
spontaneously? Which kind of geometric projection is preferred
– orthogonal or radial projection? Are the proxies properly
designed and distinguishable from each other? Is along edge
projection comprehensible?

7.1 Design of the Evaluation
We conducted the evaluation in a formative way and applied a
think-aloud approach in combination with user observations and
a questionnaire.

Apparatus. The evaluation was conducted with the prototype
mentioned in Section 6. It ran on a PC with 2.5 GHz and 3 GB
RAM under Windows XP. The display had a resolution of
1680x1050 pixels and a screen size of 20’’.
Participants. Eight participants (6 male, 2 female, age from
24to 35) took part in the evaluation (6 employees of the
computer science department, 2 graduate students). They all
have a solid background in computer science, visualization or

HCI. They were not modeling experts, but knew UML class
diagram notation and used respective editors from time to time.
Tasks and procedure. Before the evaluation procedure started,
the basic approach of the off-screen visualization was explained
This was done by means of the prototype and an example
diagram. We explained the zoom+pan navigation, the meaning
and appearance of proxy elements and the interaction with
proxies (hovering and automatic navigation). However, we did
not explain further details such as projection or clustering
strategies. For the evaluation orthogonal projection for
unconnected nodes and along edge projection for connected
nodes was used.
The evaluation procedure was structured in two parts. Part one
consisted of a guided navigation within a smaller class diagram.
During the procedure, we asked the participants to perform
particular tasks and about their opinions concerning certain
design issues. Before they started to use the prototype, a printout
of the UML class diagram was handed to the participants. The
structure of the diagram was explained to them, and they were
asked to memorize the spatial layout of the diagram for 1-2
minutes. The diagram consisted of 31 classes (3 of them
abstract) and 35 relationships (18 associations and 17
generalizations). In order to make its content easily
understandable, the diagram modeled the structure of a theater.
For example, there were classes named actor and stage play. An
actor plays a role within a stage play which was expressed by
means of an association. Furthermore, a stage play is a special
kind of event – expressed by means of a generalization. The
diagram was layouted manually according to aesthetic rules [7].
For instance, general classes were always located above their
subclasses, crossing of edges was avoided and classes belonging
together on a semantic level were also located close together in
the layout.
During the guided navigation we asked the participants to
perform several smaller tasks. For example, we asked them to
estimate the direction of a class located off-screen, to indicate an
off-screen class on the printout without using the previews or to
navigate to a certain class and tell its directly connected
neighbors. Furthermore, we asked them to count abstract classes
in order to see if proxies are distinguishable from each other. At
a certain point of the navigation a temporal projection (see

Section 4.1.2) occurred, as the respective class was connected
by means of a bent edge. We asked the participants if they could
explain this behavior spontaneously and discussed this
technique. At the end of part one, participants were asked to
explicitly compare geometric projection and along edge
projection. For that, they were asked to navigate freely in both
modes. In order to clearly demonstrate the creation of several
proxies for one class in along edge projection mode, a class with
eight edges was used. For each edge one proxy was created.
In part two, the participants were asked to freely explore an
unknown UML class diagram consisting of 72 classes, 8
interfaces and 89 relationships (30 associations, 45
generalizations and 14 realizations). The exploration had a
duration of approximately five minutes. Subsequently, we
demonstrated the avoid cluster algorithm and asked the
participants if it is comprehensible to them.
During both parts, we took notes about observations, comments
and suggestions of the participants. Beyond that, at the end we
handed a questionnaire to them with five questions. For
example, they were asked to rate the discriminability of proxy
elements and the comprehension of automatic zoom+pan on five
point Likert scales (from “agree” to “completely disagree”).

7.2 Results and Discussion
Navigation. All participants quickly understood the basic
approach of the off-screen visualization technique. However, for
the first navigation task most of them spontaneously applied
traditional zooming and panning. After an additional hint that
navigation is also possible by clicking on respective proxy
elements, participants mainly applied this approach. Especially,
two participants emphasized that they liked the idea of
“navigating the diagram step-by-step” by clicking proxies and
jumping from node to node.
In general, the automatic zoom and pan navigation was
comprehensible. However, some participants commented that it
was too quick and should zoom out more during panning to give
a decent overview. This can be easily adjusted. Furthermore,
two participants remarked that they would not need a smooth
animation at all, as their only attempt is to quickly navigate to
the associated node.

Projection. Most of the participants (6 of 8) expected radial
projection and were not able to identify off-screen nodes
correctly without using the preview function. Furthermore, after
explaining the principle of along edge projection was
comprehensible to the participants. Most of them liked the idea
of maintaining the routing of edges. However, many participants
mentioned that the occurrence of several proxies for the same
node is confusing and suggested a clearer indication which
proxies are associated to the same node. Similar results were
collected for the temporal projection. It was understood by the
participants after explanation, but they suggested a clearer
indication of temporal proxies (e.g. by arrows).

Appearance of Proxies. Proxy elements representing classes
directly connected with visible nodes were clearly
distinguishable from other proxy elements. As mentioned in
Section 4.2, the color of the proxies matched with the color of
the respective node. Many participants suggested using different
colors which are more distinguishable from each other.
However, all participants were able to identify the different

types of proxy elements when they were asked to count proxies
representing abstract classes and interfaces. Furthermore, five
participants suggested adding more information to the proxies,
such as the amount of methods or attributes of a class.
Further observations and comments. One participant
suggested a history function, to navigate back to previously
visited nodes. This can be beneficial if a proxy was clicked by
accident or if navigating back is necessary during the editing
process. Furthermore, three participants asked for a distance
indication. As previously mentioned, we assumed this as less
important for the domain of node-link diagrams. For which tasks
distance indication is beneficial and how it can be achieved in
combination with our approach is subject for further
investigation. Moreover, six participants asked for an overview,
and we observed that all participants used the printout of the
diagram for orientation. In fact, an overview was already
implemented for the editor but we turned it explicitly off for the
evaluation. In which way an overview supports our approach
will be carefully studied in the future.
All these observations considered we come to the following
final suggestions: proxies not connected with visible nodes
should be created by means of radial projection as most of the
participants expected radial projection. Furthermore, many
participants were confused when a node with many edges was
represented by several proxies due to along edge projection. In
order to mitigate this problem, we propose a slight adoption of
the approach applied in the evaluation. Both projection
techniques – geometric and along edge projection – should be
applied simultaneously. Geometric projection should be used for
nodes connected with straight edges. In this case the change of
edge routing is rather easy to comprehend, and it is ensured that
there is exactly one proxy for the node. Furthermore, along edge
projection should only be applied for nodes connected with
edges which are bent several times and not completely visible in
order to prevent confusing change of edge routing.

8. CONCLUSION AND FUTURE WORK
We contributed the application of off-screen visualization to the
domain of node-link diagrams in general and to UML class
diagrams in particular. Thereby, clipped nodes are represented
by proxy elements within an interactive border region
surrounding the viewport. Proxies provide a contextual view of
information usually not visible such as the type of the associated
node and the type of connected edges. Our approach supports
map-oriented navigation as well as navigation based on the
diagram semantics. In particular, it realizes automatic navigation
to arbitrary off-screen nodes.
We investigated the design space for our approach concerning
visualization and interaction techniques. Thereby, we
contributed solutions to challenges such as the change of edge
routing during panning and zooming and the scalability to large
diagrams. The visualization technique was implemented as a
first prototype for UML class diagrams. An evaluation showed
promising results and led to final suggestions concerning the
projection of nodes and handling the change of edge routing.
For future work, we will adopt our prototype based on the
results of the expert evaluation. Furthermore, we plan to conduct
further user studies. In particular, we will investigate different
dimensions of the border region and the combination with

overview+detail techniques. As our approach is applicable to
node-link diagrams in general, we will also apply it to other
notations such as business process models.

9. ACKNOWLEDGEMENTS
This work was funded by the “Stifterverband für die Deutsche
Wissenschaft” from funds of the Claussen-Simon-Endowment.
We thank Sebastian Kleinau, Ricardo Langner and Anne Rott
for their great support.

10. REFERENCES
[1] Baudisch, P. and Rosenholtz, R. 2003. Halo: a technique

for visualizing Offscreen objects. In Proc. of the CHI ‘03
(Ft. Lauderdale, Florida, USA, April 05 - 10, 2003). ACM,
pp. 481-488.

[2] Cherubini, M., Venolia, G., DeLine, R., and Ko, A. J.
2007. Let's go to the whiteboard: how and why software
developers use drawings. In Proc. of CHI ‘07 (San Jose,
California, USA, April 28 - May 03, 2007). ACM, pp. 557-
566.

[3] Cockburn, A., Karlson, A., and Bederson, B. B. 2008. A
review of overview+detail, zooming, and focus+context
interfaces. ACM Comput. Surv. 41, 1 (Dec. 2008), pp. 1-31.

[4] Dobing, B. and Parsons, J. 2006. How UML is used.
Commun. ACM 49, 5 (May. 2006), pp. 109-113.

[5] Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P.,
Woodward, M., and Wybrow, M. 2008. Exploration of
Networks using overview+detail with Constraint-based
cooperative layout. IEEE Transact.on Visualization and
Computer Graphics 14, 6 (Nov. 2008), pp. 1293-1300.

[6] Eclipse UML, http://www.eclipse.org/uml2
[7] Eichelberger, H., Schmid, K., 2009. Guidelines on the

aesthetic quality of UML class diagrams, Information and
Software Technology, Volume 51, Issue 12, December
2009, pp. 1686-1698, ISSN 0950-5849

[8] Furnas, G. W. 1986. Generalized fisheye views. SIGCHI
Bull. 17, 4 (Apr. 1986), 16-23.

[9] Gustafson, S., Baudisch, P., Gutwin, C., and Irani, P. 2008.
Wedge: clutter-free visualization of Offscreen locations. In
Proc. of CHI ’08 (Florence, Italy, April 05 - 10, 2008).
ACM, 787-796.

[10] IBM Rational Rose,
http://www.ibm.com/software/awdtools/developer/rose/

[11] Irani, P., Gutwin, C., and Yang, X. D. 2006. Improving
selection of Offscreen targets with hopping. In Proc. of
CHI ‘06 (Montréal, Québec, Canada, April 22 - 27, 2006).
ACM, pp. 299-308.

[12] Jacobs, T. and Musial, B. 2003. Interactive visual
debugging with UML. In Proc. of Symposium on Software
Visualization (San Diego, California, June 11 - 13) SoftVis
'03. ACM, pp. 115-122.

[13] Kagdi, H. and Maletic, J. I. 2007. Onion Graphs for
Focus+Context Views of UML Class Diagrams. In Proc.
VISSOFT ‘07, Banff, Canada, pp. 80-87

[14] Microsoft Visio, http://office.microsoft.com/visio
[15] Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., and

Fekete, J. 2009. Topology-aware navigation in large

networks. In Proc. of CHI ’09 (Boston, MA, USA, April 04
- 09, 2009). ACM, pp. 2319-2328

[16] Nekrasovski, D., Bodnar, A., McGrenere, J., Guimbretière,
F., and Munzner, T. 2006. An evaluation of pan & zoom
and rubber sheet navigation with and without an overview.
In Proc. of CHI ‘06 (Montréal, Québec, Canada, April 22 -
27, 2006). ACM, pp. 11-20.

[17] Object Management Group, http://www.uml.org/
[18] Petre, M. 1995. Why looking isn't always seeing:

readership skills and graphical programming. Commun.
ACM 38, 6 (Jun. 1995), pp. 33-44

[19] Sarkar, M. and Brown, M. H. 1994. Graphical fisheye
views. Commun. ACM 37, 12 (Dec. 1994), 73-83.

[20] Sharp, R. and Rountev, A. 2005. Interactive Exploration of
UML Sequence Diagrams. In Proc. of VISSOFT ‘05
(September 25 - 25, 2005). IEEE Computer Society,
Washington, DC, 8.

[21] Soukup, J. and Soukup, M. 2007. The Inevitable Cycle:
Graphical Tools and Programming Paradigms. Computer
40, 8 (Aug. 2007), 24-30

[22] Sparx Systems, http://www.sparxsystems.com/
[23] Spence, R, Apperley, M. 1982. Database navigation: An

office enironment for the professional. Behav.Inf. Technol.
1, 1, 43–54

[24] Reinhard, T., Meier, S. and Glinz, M. 2007. An Improved
Fisheye Zoom Algorithm for Visualizing and Editing
Hierarchical Models. In Proc. of the International
Workshop on Requirements Engineering Visualization
(October 15 - 19, 2007). REV. IEEE Computer Society

[25] Tominski, C., Abello, J., van Ham, F., and Schumann, H.
2006. Fisheye Tree Views and Lenses for Graph
Visualization. In Proc. of the Conference on information
Visualization (July 05 - 07, 2006). IEEE Computer Society,
Washington, DC, pp. 17-24

[26] Tominski, C.; Abello, J.; Schumann, H. 2009. Two Novel
Techniques for Interactive Navigation of Graph Layouts, In
Proc of EuroVis'09, Berlin.

[27] Turetken, O., Schuff, D., Sharda, R., and Ow, T. T. 2004.
Supporting systems analysis and design through fisheye
views. Commun. ACM 47, 9 (Sep. 2004), pp. 72-77.

[28] van Wijk, J., Nuij, W., "A Model for Smooth Viewing and
Navigation of Large 2D Information Spaces," IEEE
Transact. on Visualization and Computer Graphics, pp.
447-458

[29] Wu, J., and M.-A. Storey. 2000. "A multi-perspective
software visualization environment", in Proceedings of
CASCON'2000, November 2000, pp. 41-50.

[30] Wybrow, M., Marriott, K., Stuckey, P.J. 2006. Incremental
connector routing. In: GD 2005. Volume 3843 of LNCS.,
Springer, pp. 446-457.

[31] Zellweger, P. T., Mackinlay, J. D., Good, L., Stefik, M.,
and Baudisch, P. 2003. City lights: contextual views in
minimal space. In CHI '03 Ext. Abs. on Human Factors in
Computing Systems (Ft. Lauderdale, Florida, USA, April
05 - 10, 2003). ACM, pp. 838-839.

