
Visual Support for Understanding Product Lines
Janet Feigenspan, Christian Kästner, Mathias Frisch, Raimund Dachselt

University of Magdeburg
{janet.feigenspan, ckaestne, mfrisch, dachselt}@ovgu.de

Sven Apel
University of Passau
apel@uni-passau.de

Abstract—The C preprocessor is often used in practice to
implement variability in software product lines. Using #ifdef
statements provokes problems such as obfuscated source code,
yet they will still be used in practice at least in the medium-term
future. With CIDE, we demonstrate a tool to improve under-
standing and maintaining code that contains #ifdef statements
by visualizing them with colors and providing different views on
the code.

I. INTRODUCTION

Software product line (SPL) engineering is an efficient
technique to create variable software. Instead of implementing
each software product from scratch, program variants are
generated from a set of features. A feature is a user-visible
characteristic of a software system [1] and is modeled and
implemented according to requirements of a domain. The
source code of those features constitute the SPL, from which
different software products, or variants, can be generated.

SPLs promise several benefits, including reduced cost and
time to market, efficient mass customization, improved quality,
and better maintenance and evolution [1]. However, these
benefits come at a price of a more complex implementation;
instead of a single program, an SPL developer implements
multiple (potentially millions of variants) at the same time.

For implementing SPLs, conditional compilation, for ex-
ample using ifdef directives of the C preprocessor, is used
often in practice, despite the well-known problems, such as
source code scattering and obfuscation [2]. From HP’s product
line of printer firmware [3] to the Linux kernel [4], there
are many examples of SPLs implemented with conditional
compilation. Although academics rather recommend modular
implementation mechanisms, such as components or aspects,
industrial adoption is slow. Especially when large amounts of
legacy code are involved, there is no way around preprocessors
in the medium-term future. Hence, we propose a tool to
support the use of preprocessors.

We currently explore different approaches to support under-
standing of SPLs implemented with conditional compilation,
by different forms of visualization and other tool support.
In our tool CIDE, we display code fragments framed by
#ifdef statements, by highlighting them with a background
color (one color per feature). Colors clearly differ from the
source code (compared to #ifdef statements) and that humans
can recognize and process them considerably faster than text.
This allows developers to get a quick overview of source
code and helps to navigate through source code and locate
bugs that are associated with certain features. In addition to

Fig. 1. Screenshot of the project MobileMedia in CIDE. The feature list
(bottom left) shows all features in the project and allows to assign colors.
The project explorer (top left) currently shows only files that contain code of
the feature “includeSmsFeature”, as selected in the feature list (8 out of 51
files). The source code editor also highlights code fragments that belong to a
feature with an according background color.

colors, CIDE provides views on the source code to emulate
modularity. Although the implementation of a feature is still
scattered, at tool level, we represent it similar to a modularized
implementation. Initial results indicate that visualizations and
tool support as in CIDE can improve code comprehension and
developer productivity [5].

In the demonstration, we show and discuss different visual-
izations and illustrate them in our prototype on existing SPLs.

CIDE was presented in prior work with focus on a discus-
sion of granularity, correctness, and scaling [6], [7]. Here, we
focus on program comprehension, especially how CIDE can
support a developer to understand (unfamiliar) source code
containing #ifdef statements.

II. CIDE

CIDE is an Eclipse plug-in to support SPL development
based on conditional compilation. It is released (including
further documentation) as open source at http://fosd.de/cide.

A. Visualization

CIDE provides a specialized editor as shown in Figure 1, in
which annotations are represented by background colors. Col-



ors are mapped to features, so for example, all code fragments
that are included only when feature “includeSmsFeature” is
selected are shown with the same background color.

When the entire content of a file is framed with conditional
compilation constructs, the entire file is highlighted with the
same color in Eclipse’s resource browser. If all files are
colored, so is the entire directory. This is useful especially for
large SPLs, in which sometimes complete packages implement
a feature. The developer can recognize the association of a
directory or file with a feature in the project explorer without
having to open the according file.

Obviously there are scaling issues when using distinct back-
ground colors for typical SPLs with several hundred features.
Mapping all features to different colors does not scale, because
humans cannot distinguish several hundred colors without
direct comparison. In CIDE, we simply allow a developer to
assign more than one feature to the same color and provide
tool tips, which show the underlying feature(s) of a source
code fragment. Alternatively, we can assign shades of gray to
all feature code and let the developer manually chose colors
for features that are relevant for the task at hand. We currently
explore different directions; due to space restrictions, we skip
a detailed discussion here.

B. Views
To support a developer to hide code fragments that are not

relevant for the task at hand, CIDE provides views on the
file system and views on file content. A view shows only
code fragments that belong to a specific feature or feature
combination (which the developer can select in a dialog).
When activated, only files that contain code of a selected
feature are shown in the resource tree (left in Figure 1).
When opening a file, again only code fragments that belong
to the feature are shown, which is implemented similar to
code folding. Additionally, the view includes some context
information; for example, in the case only a single statement
is framed, the surrounding class and method name are provided
as context information. The context information is similar to
context provided in modularized implementations in form of
interfaces or pointcuts.

Additionally to views on a feature or feature combination,
CIDE also provides a preview function for a specific variant.
For a valid feature selection, all included files and code frag-
ments are shown, similar to the code of the generated variant.
This allows a preview and detailed analysis, for example, for
debugging code that occurs only in the interaction of two
features. For more details see [7].

Views are implemented at editor level, without actually
modifying source code. Developers can quickly change be-
tween views or expand them. Views are editable, so developers
can modify code directly inside views (to avoid ambiguities,
we show markers for hidden code).

III. BENEFITS

Using background colors to represent code framed by #ifdef
statements can speed up program comprehension. In an exper-
iment, we found a speed up for up to 43 % for some tasks,

compared to conventional #ifdef statements [5]. We selected
the existing SPL MobileMedia [8], which was implemented
with #ifdef statements and created a second version in which
variability was represented by colors. We found that when
subjects should locate feature code, they were faster when they
worked with colors. However, when subjects should fix bugs,
colors had at best no effect on the response time. In a follow-
up experiment, we additionally found that, when given the
opportunity to switch between both representations, subjects
use this frequently. We conclude from both experiments, that
colors help programmers to work with unfamiliar source code.
However, we also found that colors have to be chosen with
care, such that programmers are not distracted by them (which
happened in one case in our experiment).

So far, we did not measure how views improve program
comprehension. Nevertheless, Atkins et al. [9] have found an
40 % increase in productivity in their tool Version Editor,
which provides similar views (views on variants, completely
hiding variability from developers). Our tool is more flexibile
and allows different kinds of views, but in general we expect
a similar improvement.

IV. SUMMARY AND FUTURE WORK

Currently, we explore different visualization approaches and
forms of tool support to improve understanding of software
product lines. In parallel, we explore different color palettes,
zoomable interfaces, seesoft-style visualizations, actual remod-
ularization instead of views at editor level, and many more.
Our general research goal is to support developers who have
to deal with conditional compilation.

ACKNOWLEDGMENT

Apel’s work is supported in part by DFG project #AP
206/2-1. Feigenspan’s work is supported by BMBF project
01IM08003C (ViERforES).

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practice and
Patterns. Addison Wesley, 2001.

[2] J. Favre, “Understanding-In-The-Large,” in Proc. Int’l Workshop on
Program Comprehension. IEEE, 1997, p. 29.

[3] T. Pearse and P. Oman, “Experiences Developing and Maintaining Soft-
ware in a Multi-Platform Environment,” in Proc. Int’l Conf. Software
Maintenance (ICSM). IEEE, 1997, pp. 270–277.

[4] J. Sincero et al., “Is The Linux Kernel a Software Product Line?” in Proc.
SPLC Workshop on Open Source Software and Product Lines, 2007.

[5] J. Feigenspan, “Empirical Comparison of FOSD Approaches Regarding
Program Comprehension – A Feasibility Study,” Master’s thesis, Univer-
sity of Magdeburg, 2009.

[6] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in Software Product
Lines,” in Proc. Int’l Conf. Software Engineering (ICSE). ACM, 2008,
pp. 311–320.

[7] C. Kästner, S. Trujillo, and S. Apel, “Visualizing Software Product Line
Variabilities in Source Code,” in Proc. SPLC Workshop on Visualization
in Software Product Line Engineering. Lero, 2008, pp. 303–312.

[8] E. Figueiredo et al., “Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability,” in Proc. Int’l Conf. Software
Engineering (ICSE). ACM, 2008, pp. 261–270.

[9] D. L. Atkins, T. Ball, T. L. Graves, and A. Mockus, “Using Version
Control Data to Evaluate the Impact of Software Tools: A Case Study of
the Version Editor,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 625–637,
2002.


