PaperLens: Advanced Magic Lens Interaction Above the Tabletop

Martin Spindler, Sophie Stellmach, Raimund Dachselt

User Interface & Software Engineering Group University of Magdeburg, Germany

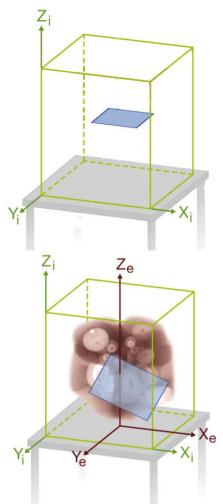
Outline

- Motivation and Approach
- Related Work
- Spaces and Applications
- Technical Approach
- Evaluation
- Conclusion

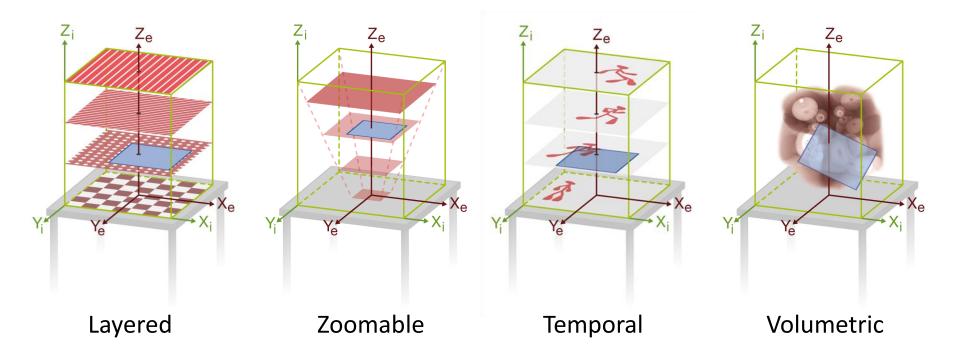
Motivation

- Information Spaces
 - Increasingly larger and more complex
 - Examples
 - Sets of volumetric data, e.g. CT and MRI Scans
 - Geographic Information Systems
 - High resolution imagery, e.g. Gigapixel pictures
- Improved Displays
 - Huge interactive Displays
 - Multiple Display Environments
- Problems
 - Limited display size for data exploration
 - Interaction techniques mostly limited to 2D surfaces
 - Multitouch, digital pens, tangibles, ...

Our Approach in a Nutshell

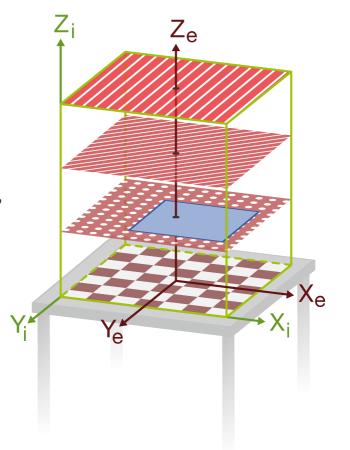


Selected Related Work

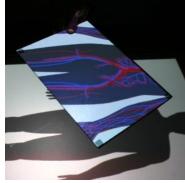

- GUI Magic Lenses [Bier et al. SIGGRAPH 93]
- Tangible Magic Lenses: metaDESK [Ullmer & Ishii UIST 97]
- Active Lenses [Fitzmaurice 93, Small & Ishii CHI 97, Yee CHI 03, ...]
- Passive Display Approaches
 - Top-projected paper: e.g. Paper Windows [Holman et al. CHI 05]
 - Switchable Diffuser: Second Light [Izadi et al. UIST 08]
 - Optical superimposition: UlteriorScape [Kakehi & Naemura TT 08]
- Shortcomings
 - Often complicated, expensive or heavy hardware
 - Volume above displays rarely used
- Pen Interaction above the Surface
 - Multi-Layer Interaction [Subramanian et al. UIST 06]

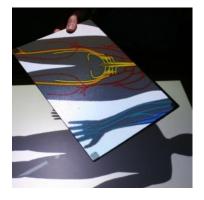
Concept of PaperLens Interaction

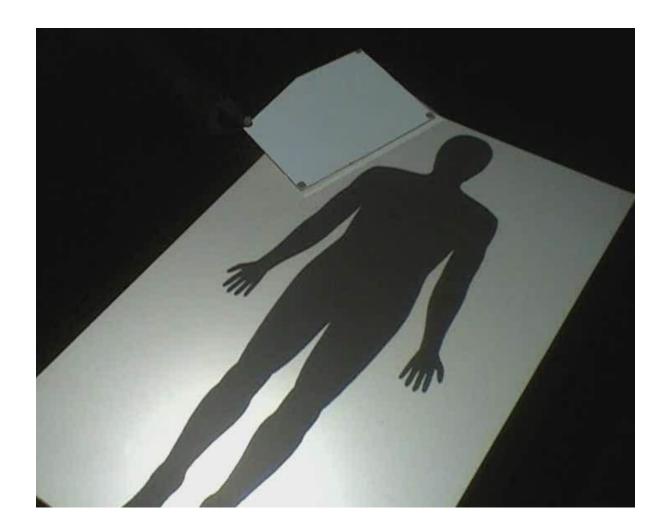
- Lightweight Magic Lens as a window into virtuality
 - With tabletop display: detail & context
- Interaction Space
 - Real 3D interaction volume
 - Moving a tracked lens (sheet of paper)
 - Translation on XY plane
 - Depth translation along Z axis
 - Tilting (Rotation in XYZ space)
- Explorable Information Space
 - Virtual volume for various types of data
 - 2D and 3D information spaces


Classification of Explorable Information Spaces

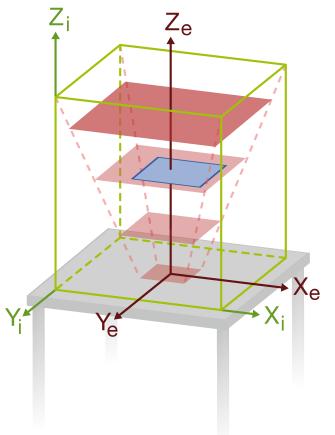
Layered Information Space

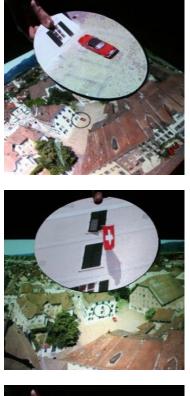

Layered Data


- Set of layered 2D data
- Continuous within 2D plane
- Each layer represents a unique feature of a contextual model
- Construction of a "layered volume"
- Application Scenarios
 - Geographic Information Systems
 - Different filter types or rendering styles



Layered Information Space: Prototype

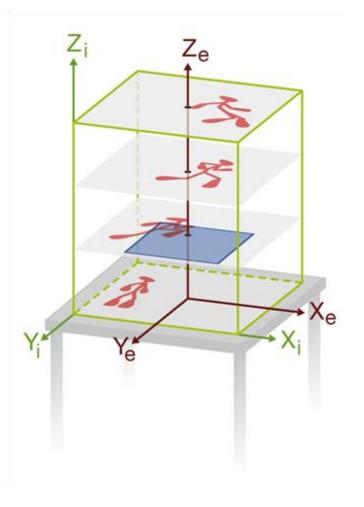


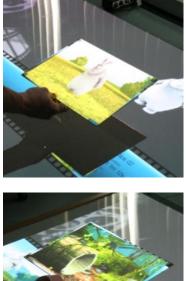

Zoomable Information Space

"Zoomable" Data

- Large continuous 2D worlds
- Usually extend far beyond tabletop
- Space-scale diagrams as in [Furnas and Bederson 1995]
- Pyramidal representation of data
- Application Scenarios
 - High resolution imagery, e.g.
 - Satellite pictures
 - "Gigapixel" images

Zoomable Information Space: Prototype

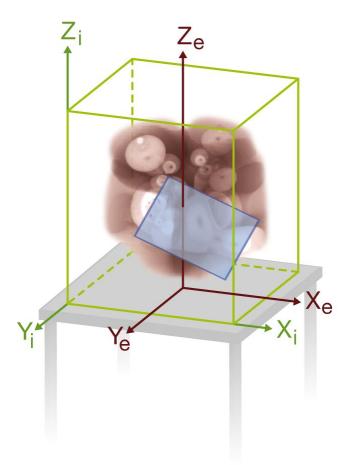




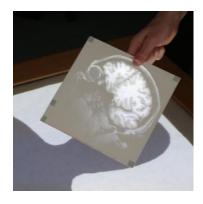
Temporal Information Space

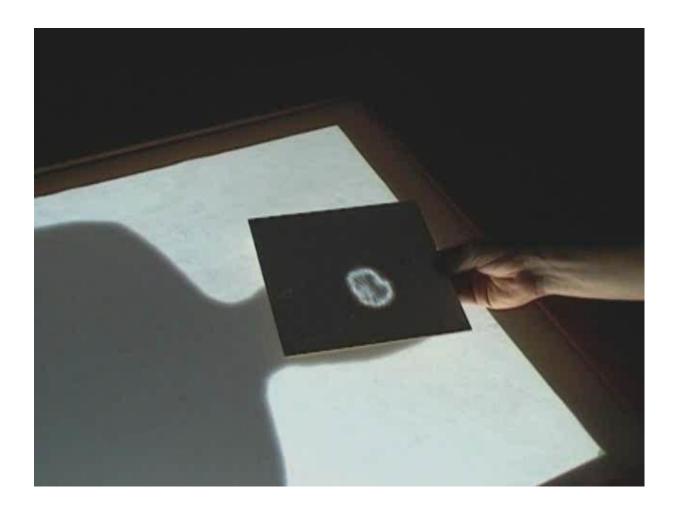
- Temporal Data
 - Time-dependent 2D data
 - Creating a "time volume" by stacking time frames
 - Z-axis represents time
- Application Scenarios
 - Explore video snippets, e.g. surveillance videos
 - Study more abstract time data, e.g. weather data

Temporal Information Space: Prototype



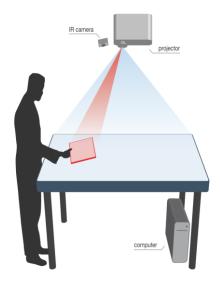
Volumetric Information Space


- Volumetric Data
 - Set of 3D samples (voxels)
 - Continuous in all 3 dimensions
 - Inherent volume
- Application Scenarios
 - Typical 3D data from medical or geological domain, e.g. CT scans
 - Pre-surgery planning
 - Detecting oil or gas reservoirs



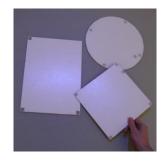
Volumetric Information Space: Prototype

Technical Approach


- Principle setup
 - Tabletop
 - Tangible Magic lens
 - Infrared (IR) camera
 - Top-projector
- Display configurations
 - Lens is always top-projected

Top-projected tabletop (with shadow)

Back-projected tabletop (without shadow)


Additional vertical display

Technical Approach

- Lens design
 - Piece of paper or pressboard
 - Cheap and lightweight
 - Arbitrary shapes: rectangle, circle, square, ...
 - IR-reflective markers
- Tracking
 - IR-camera: Optitrack Flex V 100
 - Three-marker tracking (no tilting)
 - Four-marker tracking (limited tilting)
- Perspective correction
 - Real world technical setup is modeled in OpenGL
 - Lens content using textures

Evaluation

- User study design
 - Formative users study, within-subjects design, 12 participants
 - Tasks: explore information spaces (without explanation)
- Results
 - Easy to learn, easy to use
 - Problems with keeping height in a particular layer
 - "Selected Layer should be thicker" (N=3)
 - Complaints about "abrupt and unpredictable changes of layers" (N=7)
 - Request of *"blending of layers"* (N=4)
 - Tilting of lens with increasing height
- Proposed navigational aids and layer techniques
 - Several layer arrangements (see paper)
 - Projected contour lines, Height indicator (see poster)

- Contributions
 - Cheap, lightweight and robust tangible display solution
 - Classification of explorable information spaces: layered, zoomable, temporal, and volumetric
 - Metaphor: height above tabletop + visual context
 - Various application prototypes
 - Proposed navigational aids and layer techniques
- Future Work
 - Follow-up study on navigational aids and layer techniques
 - Multiple lenses for collaborative work
 - Selection and manipulation techniques (see poster)

Thank you.

Martin Spindler: spindler@ovgu.de Raimund Dachselt: dachselt@acm.org http://wwwisg.cs.ovgu.de/uise/

University of Magdeburg | Computer Science User Interface & Software Engineering Group

References

- [Bier et al. 1993] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. Derose. "Toolglass and Magic Lenses: The See-Through Interface", In Proc. of SIGGRAPH 1993.
- [Furnas and Bederson 1995] G. W. Furnas and B. B. Bederson, "Space-Scale Diagrams: Understanding Multiscale Interfaces", In Proc. of CHI 1995.
- [Hirota and Saeki 2007] K. Hirota, Y. Saeki, "Cross-section Projector: Interactive and Intuitive Presentation of 3D Volume Data using a Handheld Screen", In Proc. of 3DUI 2007.
- [Holman et al. 2005] D. Holman, R. Vertegaal, M. Altosaar, N. Troje, and D. Johns, "Paper Windows: Interaction Techniques for Digital Paper", In Proc. of CHI 2005.

References

- [Izadi et al. 2008] S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and J. Westhues, "Going Beyond the Display: A Surface Technology with an Electronically Switchable Diffuser", In Proc. of UIST 2008.
- [Subramanian et al. 2006] S. Subramanian, D. Aliakseyeu, A. Lucero, "Multi-layer Interaction for Digital Tables", In Proc. of UIST 2006.
- [Ullmer and Ishii 1997] B. Ullmer and H. Ishii, "The metaDESK: Models and Prototypes for Tangible User Interfaces", In Proc. of UIST 1997.