
A Proposed Framework for Interactive Virtual Reality In Situ Visualization
of Parallel Numerical Simulations

Aryaman Gupta* Ulrik Günther Pietro Incardona Ata Deniz Aydin
Technische Universität Dresden & Center for Systems Biology Dresden (CSBD) & MPI-CBG, Dresden

Raimund Dachselt
Technische Universität Dresden
Interactive Media Lab Dresden

Cluster of Excellence Physics of Life

Stefan Gumhold
Technische Universität Dresden

Cluster of Excellence Physics of Life

Ivo F. Sbalzarini†
Technische Universität Dresden

CSBD & MPI-CBG, Dresden
Cluster of Excellence Physics of Life

ABSTRACT

As computer simulations progress to increasingly complex, non-
linear, and three-dimensional systems and phenomena, intuitive
and immediate visualization of their results is becoming crucial.
While Virtual Reality (VR) and Natural User Interfaces (NUIs) have
been shown to improve understanding of complex 3D data, their
application to live in situ visualization and computational steering is
hampered by performance requirements. Here, we present the design
of a software framework for interactive VR in situ visualization of
parallel numerical simulations, as well as a working prototype imple-
mentation. Our design is targeted towards meeting the performance
requirements for VR, and our work is packaged in a framework that
allows for easy instrumentation of simulations. Our preliminary
results inform about the technical feasibility of the architecture, as
well as the challenges that remain.

Index Terms: Computing methodologies—Massively parallel
and high-performance simulations; Human-centered computing—
Virtual reality;

1 INTRODUCTION

The growing disparity between computational throughput and I/O
bandwidth to disk increasingly prohibits the classical approach of
writing simulation output to disk and analyzing it in post-processing
steps. In situ techniques, which involve the visualization or analysis
of a simulation as it runs, have thus received much research interest.

In addition to helping bypass the file I/O bottleneck, in situ vi-
sualization also enables computational steering. Images rendered
in situ may be streamed to a remote client, where a user can visu-
alize the simulation live and also interact with it. This has, e.g.,
been applied in computational fluid dynamics to interactively vary
simulation parameters [8], which can help gain an intuition of the
simulated physics.

Forming an intuition of the simulated dynamics and its parameter
dependence benefits from Virtual Reality (VR) visualization, which
has been shown to improve perception of space and geometry [9].
We therefore believe that in situ VR visualization has the potential
to aid scientific discovery by providing better understanding of
simulation data, and an environment for intuitive interaction with it.

A VR environment lends itself to the use of Natural User Inter-
faces (NUI) for intuitive interaction. NUIs are based on how humans
interact with their physical environment and include the use of body
pose, hand gestures, hand-held tools, and eye gaze. It has been
shown that scientists better understand data when they are able to
interact with it via intuitive interfaces [2].

*e-mail: argupta@mpi-cbg.de
†e-mail: sbalzarini@mpi-cbg.de

Using VR for in situ visualization of simulations, however, is
complicated by the high frame rates and low latency required. Sim-
ulation data can be large, often tens or hundreds of gigabytes per
simulation time step, which typically occurs once per second. In situ
visualization in VR is therefore difficult to achieve.

Here, we propose a framework for in situ VR visualization and
NUI steering of simulations that optimizes rendering frame rate and
latency. We describe the architecture and present preliminary results,
which leads us to identifying challenges that need to be overcome in
future work.

2 RENDERING AND SIMULATION LIBRARIES USED

The rendering system used in our framework is developed using
scenery [4], an open-source VR library for both volumetric and
geometric data. In simulations, volumetric data typically stem
from discretized continuous fields and geometric data from surface
meshes or postprocessing results, such as isosurfaces or streamlines.
scenery supports rendering to both commodity VR headsets and
distributed setups, such as VR CAVEs and PowerWalls. It uses the
high-performance Vulkan API for rendering, and therefore has the
potential to harness the power of modern GPUs better than tradi-
tional OpenGL-based solutions, as still predominantly used by in
situ solutions like ParaView Catalyst [1] and VisIt Libsim [6].

The simulation engine used in our framework is OpenFPM [5], an
open-source library that enables rapid development of scalable and
efficient particle- and mesh-based numerical simulations. OpenFPM
largely automates parallelization on high-performance computers,
including distributed-memory systems, many-core systems, and
GPGPUs. It has been used to implement simulations ranging from
Smoothed-Particle Hydrodynamics to Molecular Dynamics to Dis-
crete Element Methods on thousands of CPU cores [5].

Integrating our work into OpenFPM helps us reach a wide au-
dience of computational scientists who benefit from interactive in
situ visualization and steering, but may lack the time or expertise to
write scalable solutions from scratch. We implement in situ func-
tionality into OpenFPM in a manner that allows users to enable it
in a fraction of the time and effort it normally takes to instrument a
simulation with an in situ solution.

3 IN SITU ARCHITECTURE

We design our in situ architecture targeting a rendering frame rate of
at least 60 Hz, rendering latency on viewpoint changes of at most
20 ms, and low interaction latency for steering commands.

Key to achieving these goals is to minimize data movement. We
thus choose a tightly-coupled structure with simulation and render-
ing sharing resources, running on the same nodes within a cluster.
Figure 1 shows a schematic. Each compute node runs the distributed
OpenFPM environment for the simulation, along with a scenery-
based application that performs local rendering. All simulation data
generated on a node are rendered on the node itself. The simula-

ar
X

iv
:1

90
9.

02
98

6v
1

 [
cs

.D
C

]
 6

 S
ep

 2
01

9

Cluster
Sh
ar
ed
	M
em

or
y

OpenFPM

scenery

OpenFPM

scenery
Remote
Client

Compute	Nodes

Head	Node

MPI	Messages

Serialized
Messages

1
.
.
.

n

Figure 1: Schematic of our framework architecture.

tion data are shared between OpenFPM and scenery via a common
pointer to shared memory. This enables zero-copy rendering.

Several in situ solutions, including ParaView Catalyst [1] and
VisIt Libsim [6], adopt a synchronous execution strategy, where
simulation and visualization run sequentially. We choose an asyn-
chronous strategy, aiming to reduce interaction and rendering latency.
In our asynchronous strategy, neither simulation nor visualization
need to wait for the other, which means that steering commands
can be incorporated at the earliest, and rendering can begin while
the simulation is in progress. Visualization artifacts that may result
from this lack of synchronization are expected to be small, since
numerical stability requires the simulation to only change slightly
between time steps. For our application, we emphasize low latency
over these minor visual artifacts.

The rendering results produced on the compute nodes are then
composited using a divide-and-conquer strategy similar to the binary
swap algorithm [7]. The scenery process on the Head Node is
responsible for streaming the composited result to a remote client, as
well as for receiving requests for changes in visualization parameters.
The remote client also communicates steering commands to the
OpenFPM process on the Head Node, which conveys them to all
OpenFPM processes via MPI messages.

In contrast to other approaches, we intend to render an explorable
representation, such as a Volumetric Depth Image (VDI) [3], instead
of a simple image. Such representations of volumetric data can, once
generated, be reprojected to a new viewpoint without redoing the
ray casting. We intend to render such a representation on the cluster
and stream it to the remote client. Small viewpoint changes can then
be handled locally by the remote client without involving network
latency. This is crucial for meeting the latency requirements of VR,
where viewpoint changes occur frequently.

4 PRELIMINARY RESULTS

We have implemented a prototype of our framework, perform-
ing particle-as-sphere rendering of a distributed OpenFPM sim-
ulation. The simulation runs parallel on multiple CPUs, while
visualization is done on the GPU. The shared-memory commu-
nication between the processes on a single node is extended by
a protocol to handle dynamic memory requests and reallocations.
The scenery application reads the simulation data from shared
memory and understands the data structures used by OpenFPM.
Our implementation is open source. The scenery application
can be found at github.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitugithub.com/scenerygraphics/scenery-insitu and the
OpenFPM project at git.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdatagit.mpi-cbg.de/openfpm/openfpm pdata (in
the “insitu visualization” branch).

Figure 2 shows our prototype applied to a Molecular Dynamics
simulation. The simulation code written using OpenFPM is only
161 lines of C++, and the inclusion of in situ visualization requires
changes in only two lines.

5 FUTURE WORK AND CONCLUSIONS

We have presented a framework architecture for interactive VR
in situ visualization of parallel numerical simulations. We used

…
openfpm_init(&argc, &argv,
 init_options::in_situ_visualization);
…
/* vd is the data structure containing
 * the particles that need to be visualized */
vd.visualize(); //needs to be called only once
…

C++ source code snippet (total: 161 lines)

Figure 2: An OpenFPM-based distributed Molecular Dynamics simu-
lation visualized in situ using our prototype, and the lines of code that
needed to be changed to enable in situ visualization. Particles are
colored by velocity magnitude.

scenery and OpenFPM to base the rendering and simulation parts
of the framework on. We have implemented a first prototype of the
system, demonstrating the feasibility of achieving our design goals.
In our prototype, enabling live in situ visualization only required
minimal changes in the existing simulation code.

Our prototype does not yet meet the targets we set for immer-
sive in situ visualization in Section 3, but it enables us to identify
a number of challenges that should be addressed in order to meet
them: First, volumetric rendering results need to be in an explorable
representation, such as a VDI, as explained in Section 3. Second, we
need a solution to efficiently generate and composit such a represen-
tation on a cluster. Third, support needs to be added for simulations
running on GPGPUs. In addition, we are going to extend our frame-
work to NUI-based steering by instrumenting OpenFPM to receive
steering commands on the fly and by expanding scenery’s support
for NUI interaction.

Taken together, we are confident that many applications in sci-
entific computing will benefit from a more immersive and more
explorative mode of interaction.

REFERENCES

[1] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian,
and J. Mauldin. ParaView Catalyst: Enabling In Situ Data Analysis
and Visualization. In Proc. 1st Workshop on In Situ Infrastructures for
Enabling Extreme-Scale Anal. Vis. (ISAV), pp. 25–29. ACM, 2015.

[2] F. P. Brooks Jr, M. Ouh-Young, J. J. Batter, and P. Jerome Kilpatrick.
Project GROPEHaptic displays for scientific visualization. In ACM
SIGGraph computer graphics, vol. 24, pp. 177–185. ACM, 1990.

[3] S. Frey, F. Sadlo, and T. Ertl. Explorable Volumetric Depth Images from
Raycasting. In Proc. Conference on Graphics, Patterns and Images, pp.
123–130. IEEE, 2013.

[4] U. Günther, T. Pietzsch, A. Gupta, K. I. Harrington, P. Tomancak,
S. Gumhold, and I. F. Sbalzarini. scenery: Flexible Virtual Real-
ity Visualization on the Java VM. Proc. IEEE VIS, in print, 2019.
https://arxiv.org/abs/1906.06726.

[5] P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, and I. F. Sbalzarini.
OpenFPM: A scalable open framework for particle and particle-mesh
codes on parallel computers. Computer Physics Communications,
241:155–177, 2019.

[6] T. Kuhlen, R. Pajarola, and K. Zhou. Parallel In Situ Coupling of
Simulation with a Fully Featured Visualization System. In Proc. 11th
EGPGV, 2011.

[7] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel Volume
Rendering Using Binary-Swap Compositing. IEEE Computer Graphics
and Applications, 14(4):59–68, 1994.

[8] A. Sanderson, A. Humphrey, J. Schmidt, and R. Sisneros. Coupling
the Uintah Framework and the VisIt Toolkit for Parallel In Situ Data
Analysis and Visualization and Computational Steering. In International
Conference on High Performance Computing, pp. 201–214. Springer,
2018.

[9] M. Slater and M. V. Sanchez-Vives. Enhancing our lives with immersive
virtual reality. Frontiers in Robotics and AI, 3:74, 2016.

https://github.com/scenerygraphics/scenery-insitu
https://git.mpi-cbg.de/openfpm/openfpm_pdata
https://arxiv.org/abs/1906.06726

	Introduction
	Rendering and Simulation Libraries Used
	In Situ Architecture
	Preliminary Results
	Future Work and Conclusions

