

BlogNEER

Applying Named Entity Evolution Recognition on the Blogosphere

Helge Holzmann*, Nina Tahmasebi** and Thomas Risse* * L3S Research Center, {holzmann,risse}@L3S.de **Chalmers University of Technology, ninat@chalmers.se

Helge Holzmann

Outline

- Introduction to Named Entity Evolution Recognition (NEER)
- Overview of BaseNEER on the New York Times
- Limitations of NEER on Blogs (vs. High Quality Newspaper)
- Approach (from BaseNEER to BlogNEER)
 - \rightarrow Dataset Reduction
 - \rightarrow Frequency Filtering
 - \rightarrow Semantic Filtering
- Evaluation
- Conclusions

September 26, 2013

2

Language is Dynamic

- Terms change over time
- Meanings change over time
- Different cultures lead to different language trends
- Local language trends spread globally on the Web
- Short living terms are preserved in digital archives
- Names of entities change over time
 - \rightarrow Joseph Ratztinger \rightarrow Pope Benedict XVI
 - \rightarrow Czechoslovakia \rightarrow Czech Republic, Slovakia
 - \rightarrow Sean Combs \rightarrow Puff Daddy \rightarrow P. Diddy

rends Veb nives

Named Entity Evolution Recognition (NEER)

- Detection of name changes and alternative names
 - \rightarrow Temporal co-references
 - Direct, e.g., Barack Obama \leftrightarrow President Obama (lexical overlap)
 - Indirect, e.g., Project Natal \leftrightarrow Kinect
- Support for information retrieval
 - \rightarrow Especially on datasets covering long time ranges (digital archives)
 - Query expansion:

Helge Holzmann

(no lexical overlap)

September 26, 2013

4

BaseNEER *

NEER: An Unsupervised Method for Named Entity Evolution Recognition*

Nina TAHMASEBI Gerhard GOSSEN Nattiya KANHABUA Helge HOLZMANN Thomas RISSE L3S Research Center, Appelstr. 9a, 30167 Hannover, Germany {tahmasebi, gossen, kanhabua, holzmann, risse}@L3S.de

ABSTRACT

High impact events, political changes and new technologies are reflected in our language and lead to constant evolution of terms, expressions and names. Not knowing about names used in the past for referring to a named entity can severely decrease the performance of many computational linguistic algorithms. We propose NEER, an unsupervised method for named entity evolution recognition independent of external knowledge sources. We find time periods with high likelihood of evolution. By analyzing only these time periods using a sliding window co-occurrence method we capture evolving terms in the same context. We thus avoid comparing terms from widely different periods in time and overcome a severe limitation of existing methods for named entity evolution, as shown by the high recall of 90% on the New York Times corpus. We compare several relatedness measures for filtering to improve precision.

* 24th International Conference on Computational Linguistics (Coling 2012) Mumbai, India, December 2012 http://www.l3s.de/neer-dataset

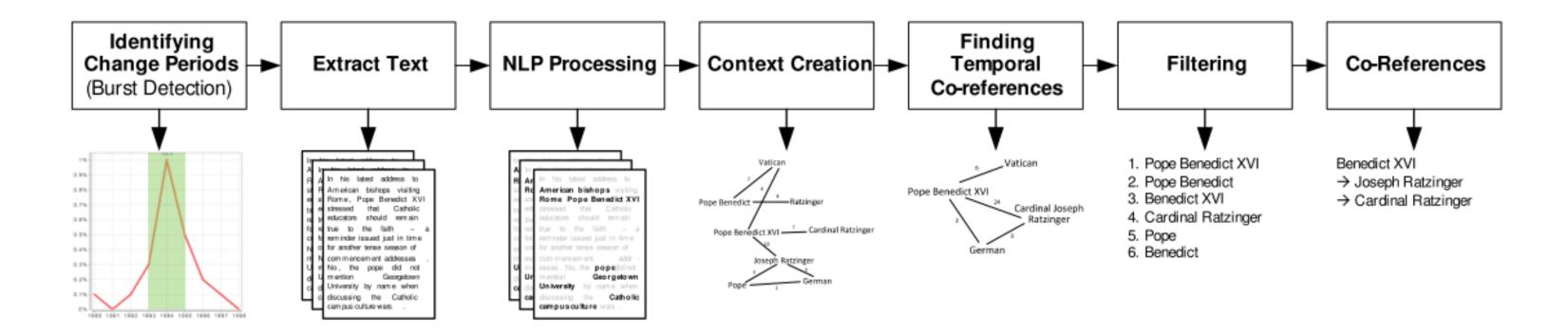
Helge Holzmann

September 26, 2013

5

BaseNEER

<u>"Chad Johnson has legally changed his name to Chad Javon Ocho Cinco"</u>



[sports.espn.go.com]

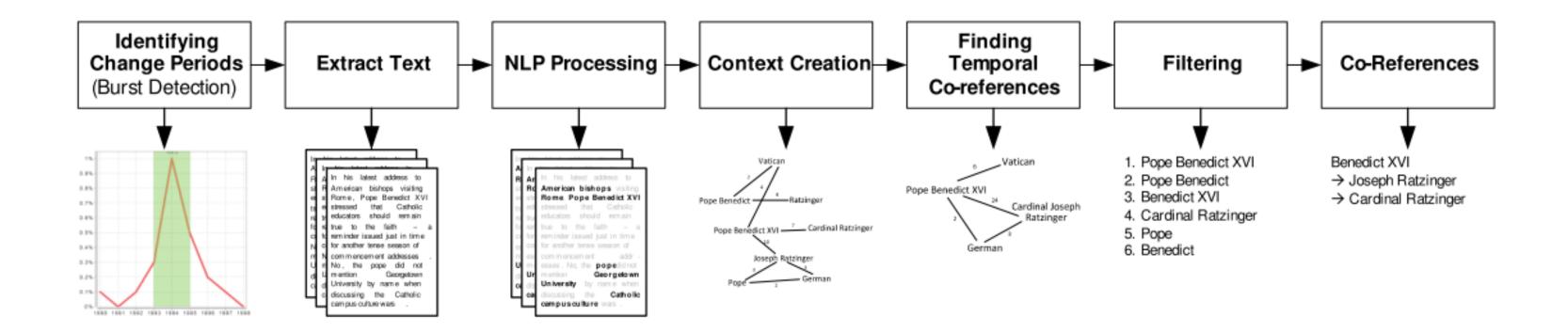
NEER on Blog Data vs. High Quality Newspaper

- Multiple sources vs. one source
- More dynamic language vs. editorial controlled
- Rather colloquial vs. written/formal
- Linking complementary terms/entities vs. focused reports
 - \rightarrow More co-occurring terms
 - \rightarrow Larger contexts
 - \rightarrow More noise

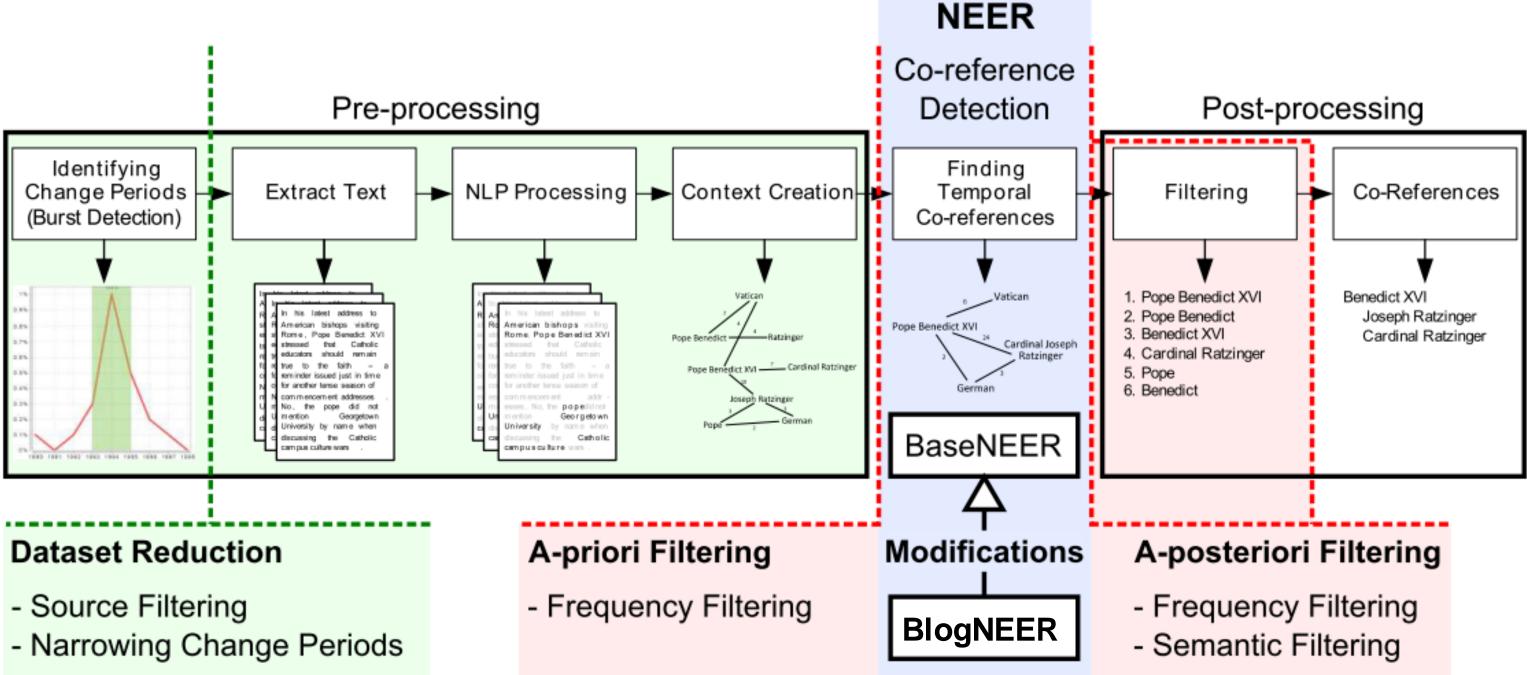
September 26, 2013

7

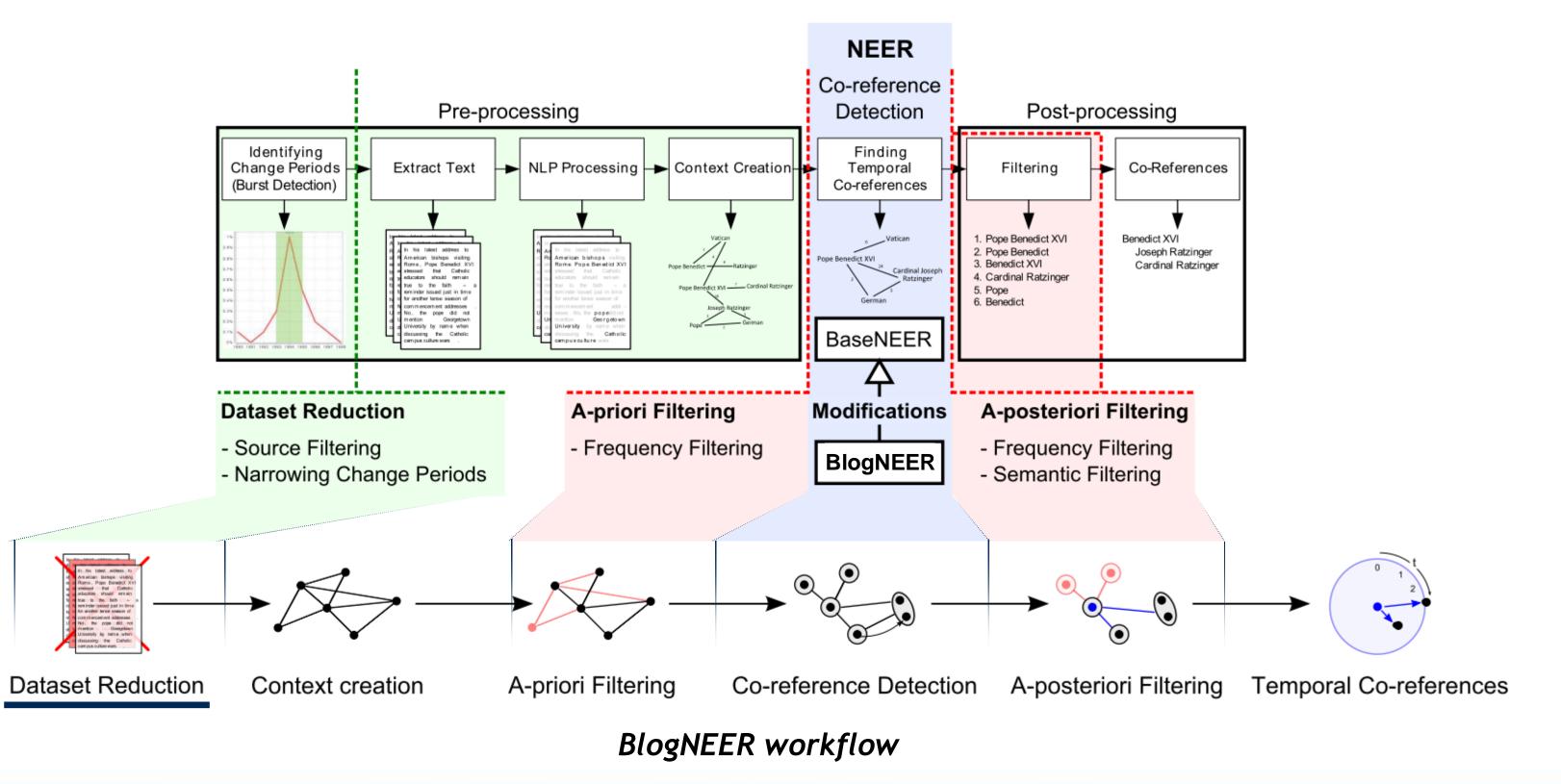
From BaseNEER to BlogNEER



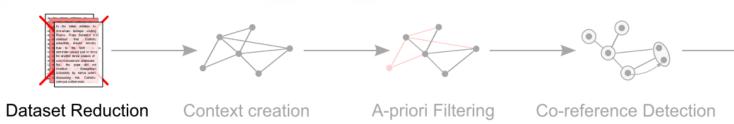
From BaseNEER to BlogNEER



From BaseNEER to BlogNEER



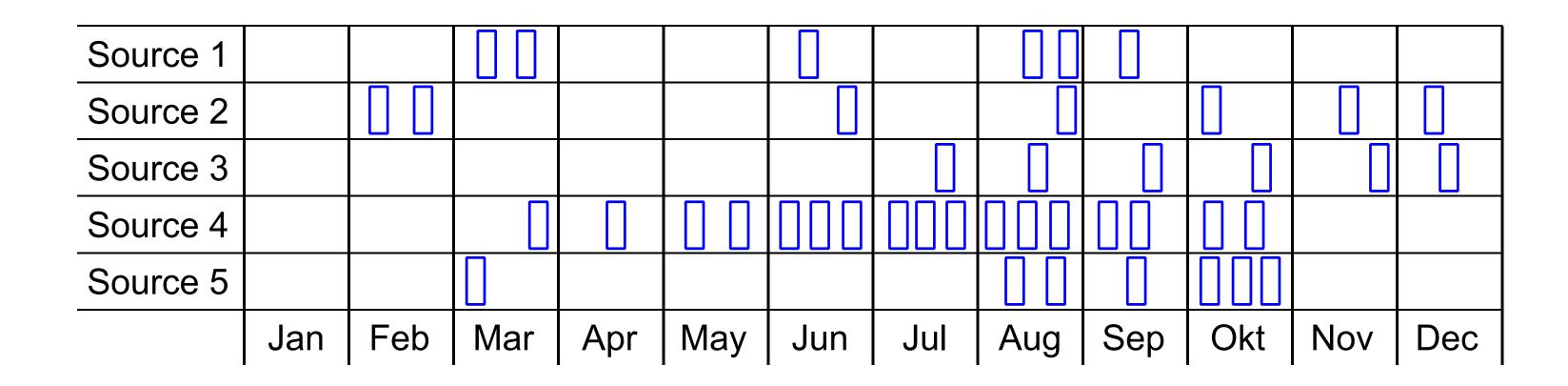
Helge Holzmann



Dataset Reduction

Source filtering

 \rightarrow Consider *President Obama* and a president of some sports club



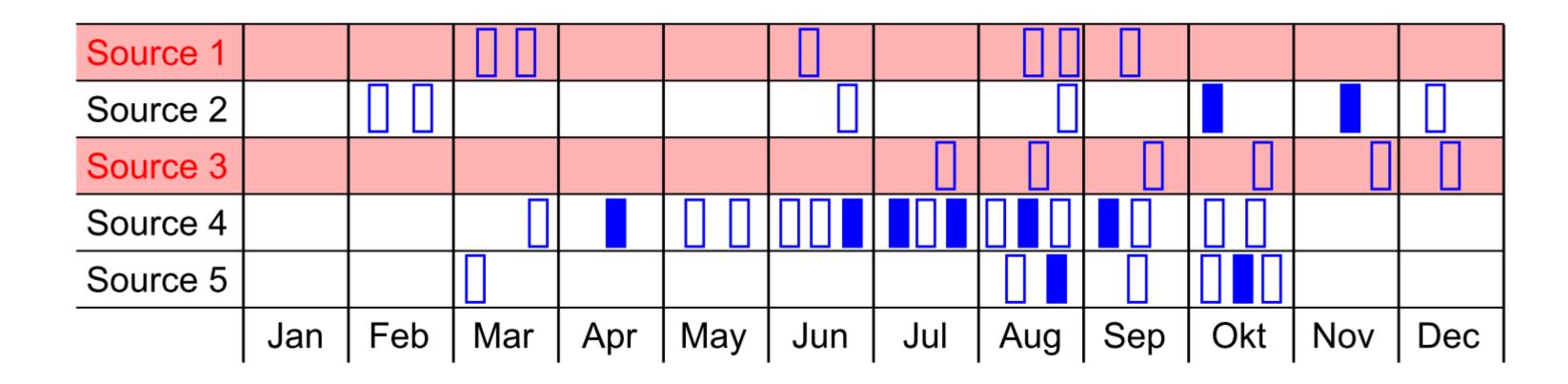
Document containing President or Obama

Co-reference Detection A-posteriori Filtering Temporal Co-references

Dataset Reduction

Source filtering

 \rightarrow Consider *President Obama* and a president of some sports club

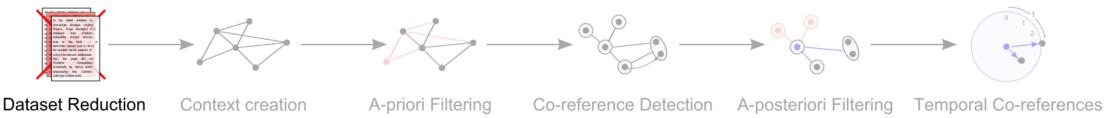


Document containing *President* or Obama

Document containing President Obama

Helge Holzmann

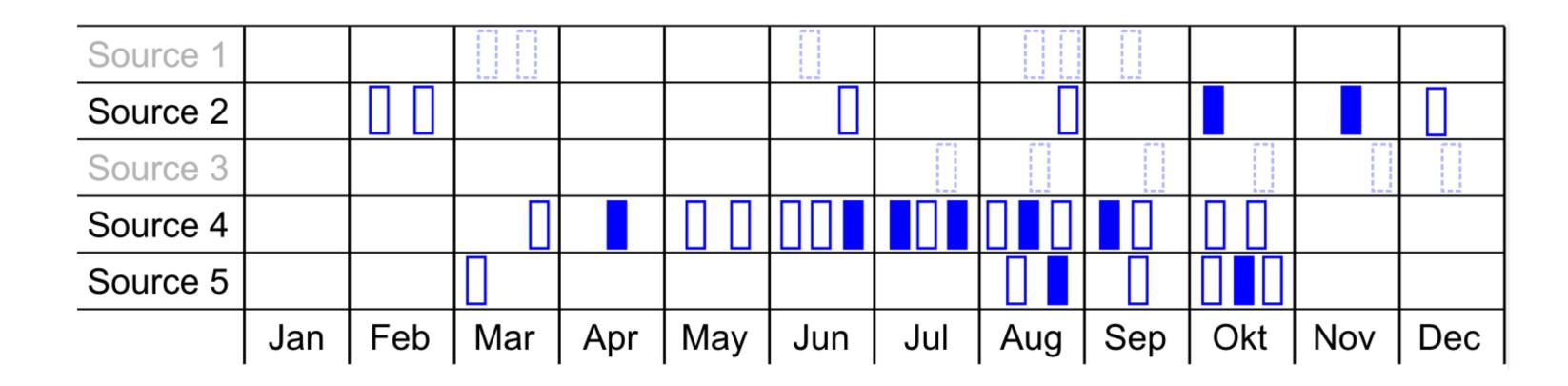
Co-reference Detection A-posteriori Filtering Temporal Co-references



Dataset Reduction

Narrowing change periods

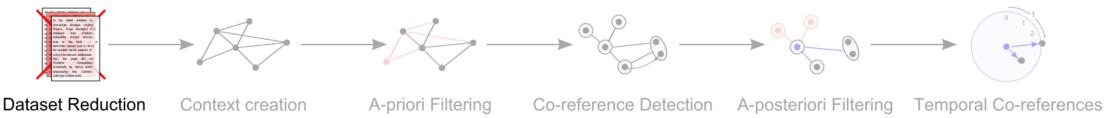
 \rightarrow Consider the presidential election and other events involving Obama



Document containing *President* or Obama

Document containing President Obama

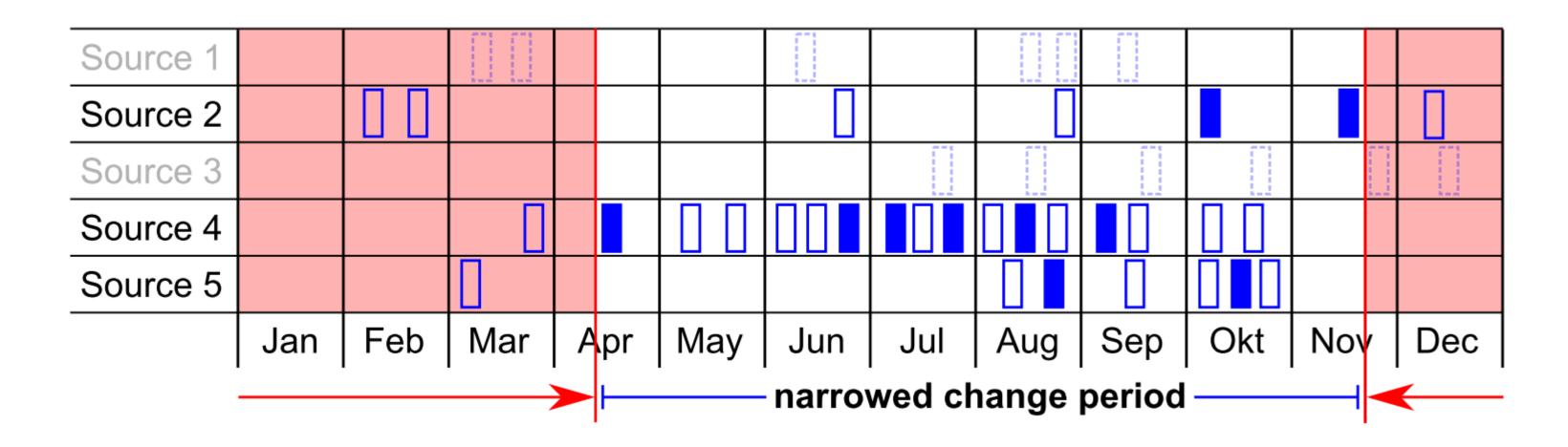
Helge Holzmann



Dataset Reduction

Narrowing change periods

 \rightarrow Consider the presidential election and other events involving Obama

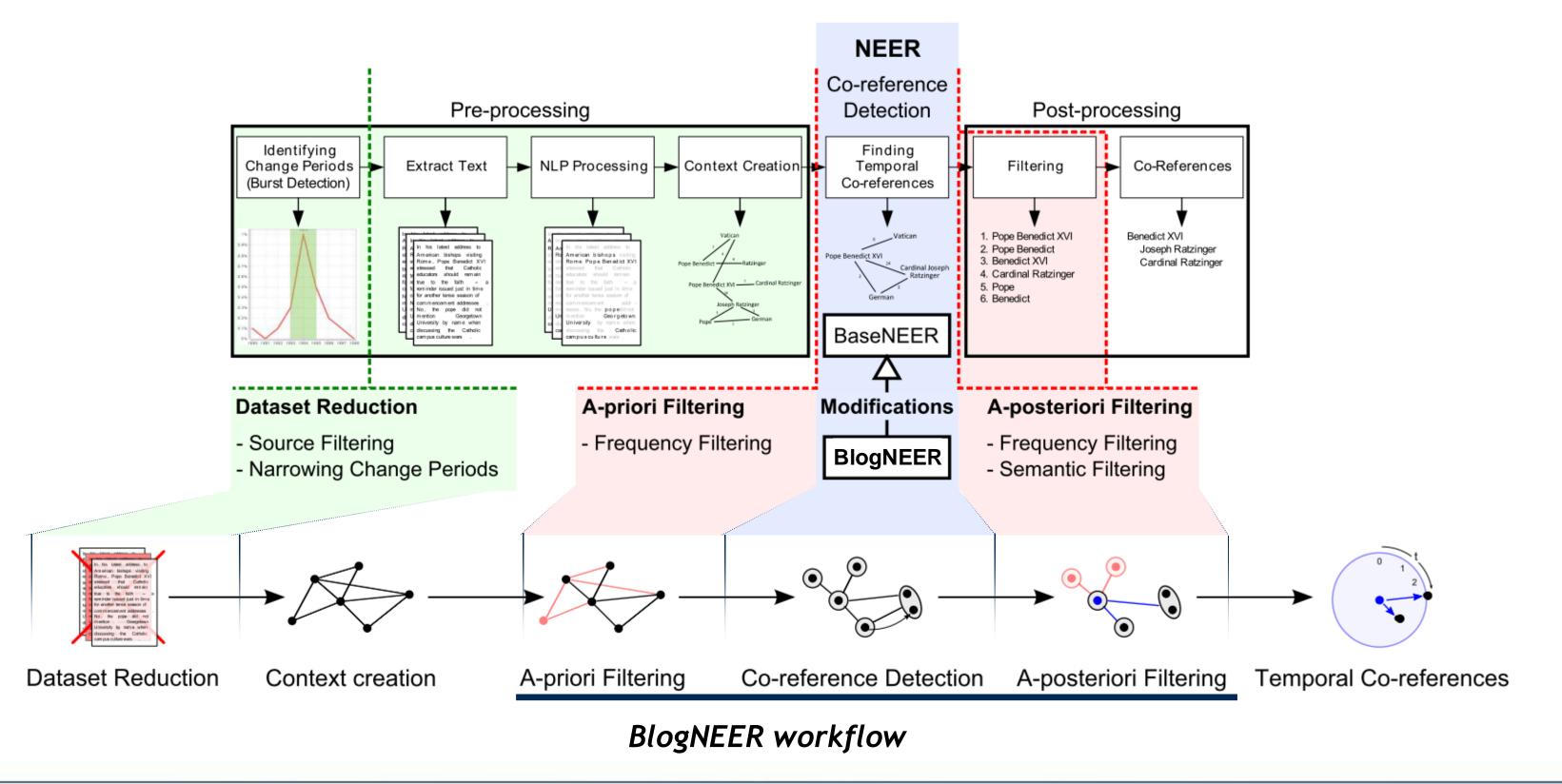


Document containing *President* or Obama

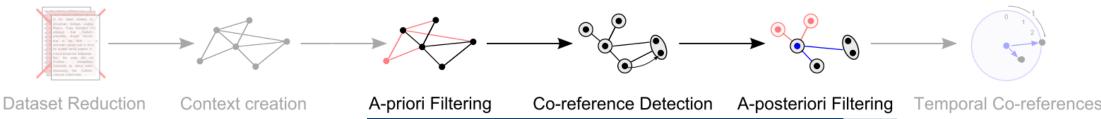
Document containing President Obama

Helge Holzmann

Frequency Filtering and Co-reference Detection



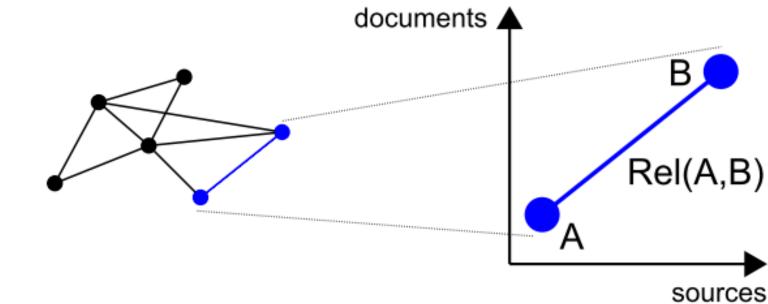
Helge Holzmann



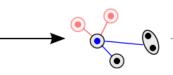
Frequency Filtering and Co-reference Detection

Based on number of documents / sources of terms / relations lacksquare

 \rightarrow E.g., "USA Today just leaked the name of <u>Microsoft's Project Natal</u> motion control setup: <u>Kinect</u>"



- Co-reference detection
 - \rightarrow Term merging / graph consolidation by means of sub-terms
 - E.g., Tony Blair ↔ Prime Minister Tony Blair ↔ Prime Minister
 - \rightarrow A-posteriori frequency filtering based on accumulated frequencies



[engadget.com]

Dataset Reduction

Context creation

A-priori Filtering

Semantic Filtering

Incorporating DBpedia

http://dbpedia.org/resource/Pope_Benedict_XVI

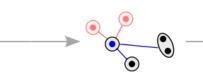
About: Pope Benedict XVI

An Entity of Type : ChristianBishop, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

Benedict XVI (Latin: Benedictus PP. XVI; Italian: Benedetto XVI; German: Benedikt XVI.; born Joseph Aloisius Ratzinger on 16 April 1927) is the 265th Pope, a position in which he serves dual roles as Sovereign of the Vatican City State and leader of the Catholic Church. As pope he is regarded as the successor of Saint Peter.

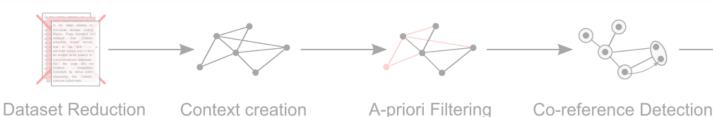
Property	Value
dbpedia-owl:birthDate	 1927-04-16 (xsd:date)
	category:German_Roman_Catholic_theologians category:German_popes category:Grand_Crosses_of_the_Order_of_Merit_of_the_Federal_Republic_of_Ge
	owl:Thing dbpedia-owl:Agent dbpedia-owl:Person
foaf:name	Pope Benedict XVI
	dbpedia:Pope_(disambiguation) dbpedia:Pope_Benedict dbpedia:Benedict
	dbpedia:Benedict_XVI

Helge Holzmann



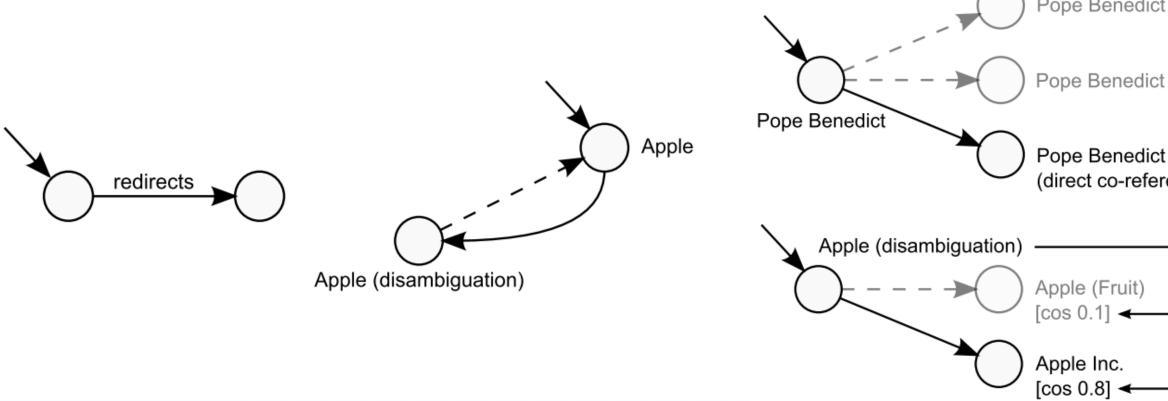
Co-reference Detection A-posteriori Filtering Temporal Co-references

ermany

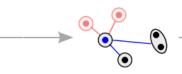


Semantic Filtering

- Incorporating DBpedia
 - \rightarrow Disambiguation and aggregation of properties
 - Following redirections
 - Redirecting to a disambiguation resource
 - Disambiguation by means of direct/indirect co-references



Helge Holzmann



Co-reference Detection A-posteriori Filtering Temporal Co-references

Pope Benedict I

Pope Benedict V

Pope Benedict XVI (direct co-reference)

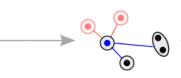
indirect co-references: iPad MacBook Microsoft

Semantic Filtering

- Comparing detected co-reference candidates
 - \rightarrow Incorporating semantic properties
 - Intersections of type, subject, year sets
 - Type hierarchy comparison
 - \rightarrow Consider: Pope Benedict XVI vs. Vatican
 - Person vs. Place Types:
 - Subjects: German popes vs. Holy cities
 - Years: 1927 (birth date) vs. 1992 (founding date)

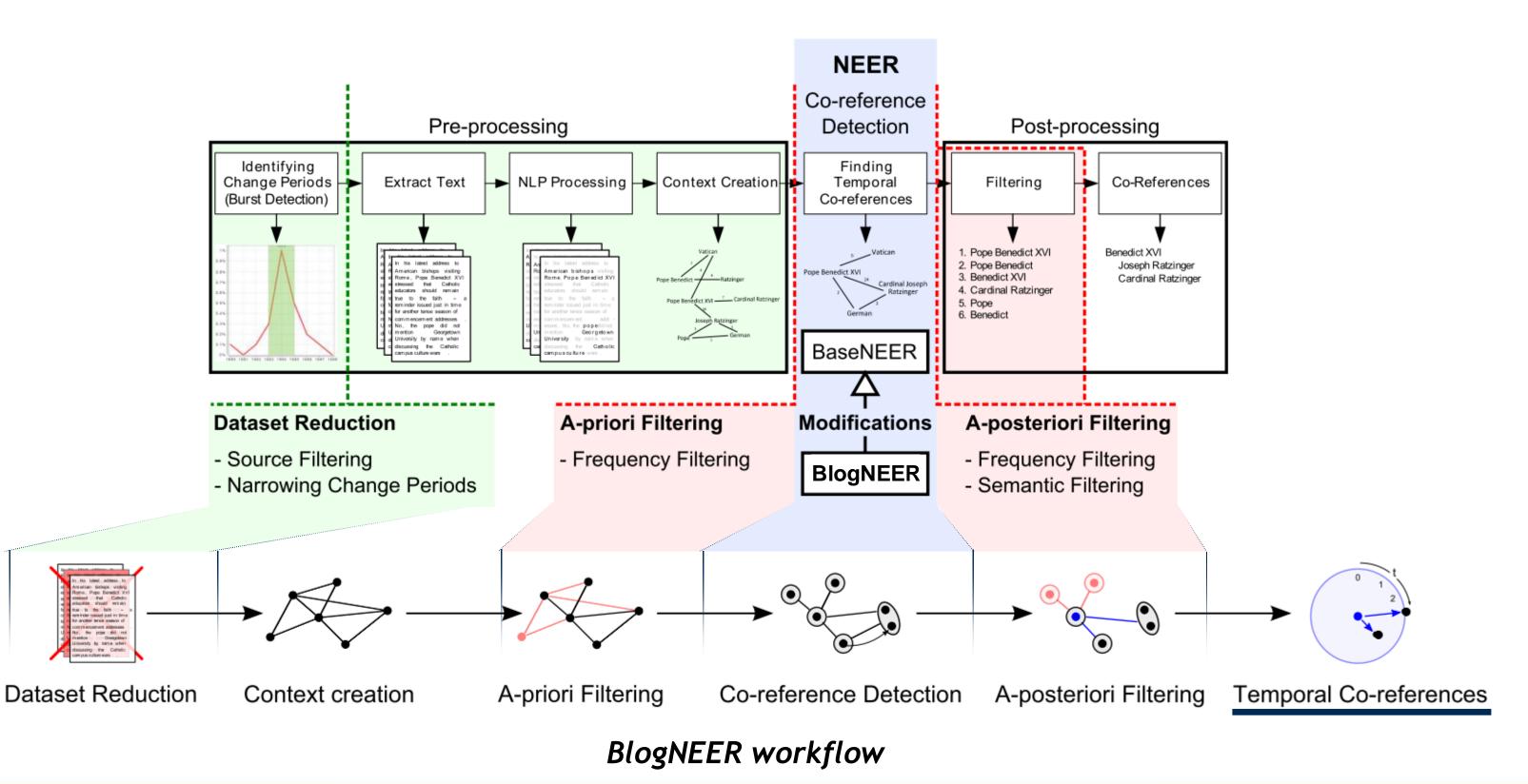
Pope Benedict XVI (Query)

Joseph Ratzinger



Co-reference Detection A-posteriori Filtering Temporal Co-references

Evaluation



Helge Holzmann

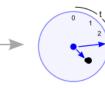
Evaluation

NEERfx experimental framework

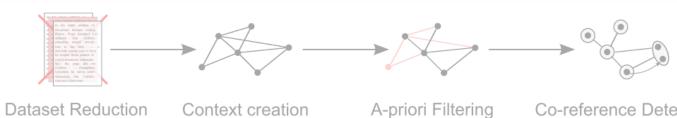
- Two blog datasets
 - \rightarrow Blogs08 *
 - English texts from first 10% of TREC-2008 blog dataset
 - \rightarrow Technorati **
 - Top 100 blogs of nine categories parsed from 2005 to 2013
- BaseNEER test set
- Performance measures: precision > recall

* Iadh Ounis, Craig Macdonald and Ian Soboroff. Overview of the trec-2008 blog track. In In Proceedings of TREC-2008, 2009. ** http://www.technorati.com

Helge Holzmann



Co-reference Detection A-posteriori Filtering Temporal Co-references

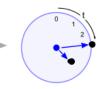


Evaluation

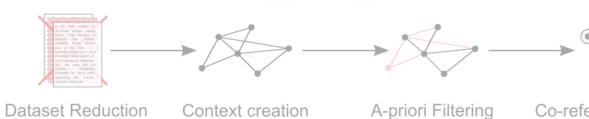
• BaseNEER vs. BlogNEER

	Precision	Recal
BaseNEER	8%	90%
BaseNEER + frequency filtering	33%	86%
BlogNEER without a-posteriori filtering	6%	64%
BlogNEER after a-posteriori frequency filtering	48%	43%
BlogNEER after semantic filtering	67%	36 %
Results on Blogs08	Precision	Recal
BaseNEER	Precision 8% 33%	Recal 90% 86%
Results on Blogs08 BaseNEER BaseNEER + frequency filtering BlogNEER without a-posteriori filtering	8%	90%
BaseNEER BaseNEER + frequency filtering	8% 33%	90% 86%
BaseNEER BaseNEER + frequency filtering BlogNEER without a-posteriori filtering	8% 33% 6%	86% 87%

Helge Holzmann



Co-reference Detection A-posteriori Filtering Temporal Co-references



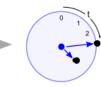
Evaluation

• Example

Step	Result set	Precision	Recall		
Unfiltered	Apple, Engadget, GameStop, Project Natal, Kotaku, Nintendo, Redmond, USA Today, Microsoft Kinect, Microsoft	20%	100%		
Semantic Filtering	Project Natal, Microsoft Kinect	100%	100%		
Query Kinect on Technorati					

→ Expected Project Natal and Microsoft Kinect

Helge Holzmann



Co-reference Detection A-posteriori Filtering Temporal Co-references

Evaluation

• Example

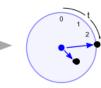
Step	Result set	Precision	Recall
Unfiltered	Sean, Sean Penn, Penn, Combs, Diddy, York, Puff, Puff Daddy, Daddy, MTV, Video, Video Music Awards, Music Awards, Music, Award, Boy, Rock, Chris Rock, Chris, Bad, Rapper,	12%	100%
Frequency Filtering	Sean, Sean Penn, Combs, Diddy, Puff Daddy, Video Music Awards	67%	100%
Semantic Filtering	Puff Daddy	100%	50%

Query Sean Combs on Blogs08

 \rightarrow Expected *Puff Daddy* and *Diddy*

 \rightarrow Diddy disambiguated to Diddy - Dirty Money \neq Sean Combs

Helge Holzmann



Co-reference Detection A-posteriori Filtering Temporal Co-references

Conclusions

- BlogNEER more resistant against noise (compared to BaseNEER) \rightarrow Comparable / better results
- Dataset reduction very effective \rightarrow Room for improvement, e.g., clustering of sources / documents
- First approach incorporating semantic filtering
 - \rightarrow Very promising results, also co-references unknown by DBpedia
 - e.g., Czechoslovakia, Czech Republic, Slovakia
 - \rightarrow Works only with available entities (*Diddy* example)
- Future work to focus on incorporating ...
 - \rightarrow ... semantic meta data (e.g., given name \rightarrow gender)
 - \rightarrow ... explicit temporal / co-reference information instead of co-occurrences

Questions / Discussion

Helge Holzmann

k you for your attention!